RSS-Feed abonnieren
DOI: 10.1055/s-2003-37649
Allyltrichlorostannane Additions to α-Amino Aldehydes: Application to the Total Synthesis of the Aspartyl Protease Inhibitors l-682,679, l-684,414, l-685,434, and l-685,458
Publikationsverlauf
Publikationsdatum:
07. März 2003 (online)
Abstract
The hydroxyethylene dipeptide isosteres l-682,679, l-684,414, l-685,434, and l-685,458 were synthesized in a few steps by a sequence involving an allyltrichlorostannane coupling with an α-amino aldehyde, followed by hydroboration of the corresponding 1,2-syn and 1,2-anti amino alcohols to give the diols, lactonization under TPAP conditions, lactone opening, and peptide coupling with the desired amine or dipeptide amide. The present synthetic approach represents a practical entry to a large range of other dipeptide isosteres.
Key words
amino aldehydes - HIV - peptides - total synthesis - lactones
-
1a
Vacca JP.Condra JH. Drug Discov. Today 1997, 2: 261 -
1b
Steele FR. Nature Med. 1996, 2: 257 -
1c
Huff JR. J. Med. Chem. 1991, 34: 2305 -
1d
Prasad JVNV.Rich DH. Tetrahedron Lett. 1990, 31: 1803 - 2
Wlodawer A.Vondrasek J. Annu. Rev. Biophys. Biomol. Struct. 1998, 27: 249 - 3
Babine RE.Bender SL. Chem. Rev. 1997, 97: 1359 - 4
Tomasselli AG.Heinrikson RL. Biochim. Biophys. Acta 2000, 189 - 5 For a comparative quantitative structure-activity relationship
study on anti-HIV drugs, see:
Garg R.Gupta SP.Gao H.Babu MS.Debnath AK.Hansch C. Chem. Rev. 1999, 99: 3525 - 6
Lyle TA.Wiscount CM.Guare JP.Thompson WJ.Anderson PS.Darke PL.Zugay JA.Emini EA.Schleif WA.Quintero JC.Dixion RAF.Sigal IS.Huff JR. J. Med. Chem. 1991, 34: 1228 - 7
Panchagnula R.Thomas NS. Int. J. Pharm. 2000, 201: 131 - For the synthesis of analogues of l-685,434, see:
-
8a
Litera J.Budesinsky M.Urban J.Soucek M. Collect. Czech. Chem. Commun. 1998, 63: 231 -
8b
Litera J.Weber J.Krizova I.Pichova I.Konvalinka J.Fusek M.Soucek M. Collect. Czech. Chem. Commun. 1998, 63: 541 -
8c
Evans BE.Rittle KE.Homnick CF.Springer JP.Hirshfield J.Veber DF. J. Org. Chem. 1985, 50: 4615 - 9
Thompson WJ.Fitzgerald PMD.Holloway MK.Emini EA.Darke PL.McKeever BM.Schleif WA.Quintero JC.Zugay JA.Tucker TJ.Schwering JE.Homnick CF.Nunberg J.Springer JP.Huff JR. J. Med. Chem. 1992, 35: 1685 - 10 For the synthesis of analogues of l-682,679, see:
de Solms SJ.Giuliani EA.Guare JP.Vacca JP.Sanders WM.Graham SL.Wiggins JM.Darke PL.Sigal IS.Zugay JA.Emini EA.Schleif WA.Quintero JC.Anderson PS.Huff JR. J. Med. Chem. 1991, 34: 2852 - 11
Evans J. Chem. Brit. 2001, April: 47 - 12
Pesti JA.Chorvat RJ.Huhn GF. Chem. Innovation 2000, October: 28 - 13
de Clercq E. Pure Appl. Chem. 2001, 73: 55 - 14
Ghosh AK.Shin D.Mathivanan P. Chem. Commun. 1999, 1025 - 15
Li YM.Xu M.Lai MT.Huang Q.Castro JL.DiMuzio-Mower J.Harrison T.Lellis C.Nadin A.Neduvelil JG.Register RB.Sardana MK.Shearman MS.Smith AL.Shi XP.Yin KC.Shafer JA.Gardell SJ. Nature (London) 2000, 405: 689 - 16
Li YM.Lai MT.Xu M.Huang Q.DiMuzio-Mower J.Sardana MK.Shi XP.Yin KC.Shafer JA.Gardell SJ. Proc. Natl. Acad. Sci. U.S.A. 2000, 97: 6138 - 17
Shearman MS.Beher D.Clarke EE.Lewis HD.Harrison T.Hunt P.Nadin A.Smith AL.Stevenson G.Castro JL. Biochemistry 2000, 39: 8698 - 18
Nadin A.López JMS.Neduvelil JG.Thomas SR. Tetrahedron 2001, 57: 1861 - 19
Dias LC.Giacomini R. J. Braz. Chem. Soc. 1998, 9: 357 ; Chem. Abstr. 1999, 130, 66177 - (a)
Evans DA.Coleman PJ.Dias LC. Angew Chem., Int. Ed. Engl. 1997, 36: 2738 - (b)
Evans DA.Trotter BW.Cote B.Coleman PJ.Dias LC.Tyler AN. Angew Chem., Int. Ed. Engl. 1997, 36: 2744 - 20
Dias LC.Giacomini R. Tetrahedron Lett. 1998, 39: 5343 - 21
Dias LC.Meira PRR.Ferreira E. Org. Lett. 1999, 1: 1335 - 22
Dias LC.Meira PRR. Synlett 2000, 37 - 23
Dias LC.Ferreira E. Tetrahedron Lett. 2001, 42: 7159 - 24
Dias LC.Ferreira AA.Diaz G. Synlett 2002, 1845 - 25
Liu HJ.Shia KS.Shang X.Zhu BY. Tetrahedron 1999, 55: 3803 -
27a
Narayanan BA.Bunnelle WH. Tetrahedron Lett. 1987, 28: 6261 -
27b
Bunnelle WH.Narayanan BA. Org. Synth. 1990, 69: 89 - 28 (a)
Fehrentz JA.Castro B. Synthesis 1983, 676 - 28 (b)
Saari WS.Fisher TE. Synthesis 1990, 453 - These aldehydes should be freshly prepared before
use. Attempts to purify aldehydes 13a-c by silica gel chromatography resulted
in partial racemization. Since the diastereoselectivity of the reactions
of these aldehydes with allylsilanes depends on their diastereomeric
purity, crude aldehydes were used in all of the studies described
in the text
- For optical stability studies of N-protected α-amino aldehydes, see:
-
29a
Ito A.Takahashi R.Baba Y. Chem Pharm. Bull. 1975, 23: 3081 -
29b
Garner P.Park JM. J. Org. Chem. 1987, 52: 2361 -
29c
Jurczak J.Golebiowski A. Chem. Rev. 1989, 89: 149 -
29d
Myers AG.Zhong BY.Movassaghi M.Kung DW.Lanman BA.Kwon S. Tetrahedron Lett. 2000, 41: 1359 - 30 For a review of the synthesis of
vicinal amino alcohols, see:
Bergmeier SC. Tetrahedron 2000, 56: 2561 - 31 For a review about recent advances
in the synthesis of peptides, see:
Nájera C. Synlett 2002, 1388 - 32 For an interesting paper dealing
with the question of configurational stability at the stereogenic
center next to the aldehyde function in dipeptide aldehydes, see:
Reetz MT.Griebenow N. Liebigs Ann. Chem. 1996, 335 - 33
Benedetti F.Miertus S.Norbedo S.Tossi A.Zlatoidzky P. J. Org. Chem. 1997, 62: 9348 - 35 The influence of an intramolecular
hydrogen bond in the stereoselection of α-amino carbonyl
compounds has been described:
Pace RD.Kabalka GW. J. Org. Chem. 1995, 60: 4838 - 36
Hoffman RV.Maslouch N.Cervantes-Lee F. J. Org. Chem. 2002, 67: 1045 -
37a
Mitsunobu O. Synthesis 1981. p.1 -
37b
Dodge JA.Trujillo JI.Presnell M. J. Org. Chem. 1994, 59: 234 -
37c
Martin SF.Dodge JA. Tetrahedron Lett. 1991, 32: 3017 -
38a
D’Aniello F.Mann A.Mattii D.Taddei M. J. Org. Chem. 1994, 59: 3762 -
38b
Ciapetti P.Taddei M.Ulivi P. Tetrahedron Lett. 1994, 35: 3183 -
38c
Ciapetti P.Falorni M.Taddei M. Tetrahedron 1996, 52: 7379 - 39 This compound has been prepared
earlier by Taddei and co-workers. The 1H NMR
data for our compound is consistent with the described 1H
NMR data reported by Taddei et al., but the 13C
NMR data are not. According to Taddei et al., there are no chemical
shifts between 60 and 80 ppm, and we observed 2 signals, at 65 and
75 ppm, attributed to CHN and CHOH, respectively,
as expected:
D’Aniello F.Taddei M. J. Org. Chem. 1992, 57: 5247 -
41a
Ley SV.Norman J.Griffith WP.Marsden SP. Synthesis 1994, 639 -
41b
Bloch R.Brillet C. Synlett 1991, 829 - For other synthesis of these lactones, see:
-
42a
Ghosh AK.Fidanze S. J. Org. Chem. 1998, 63: 6146 -
42b
Ghosh AK.McKee SP.Thompson WJ.Darke PL.Zugay JC. J. Org. Chem. 1993, 58: 1025 -
42c
Pégorier L.Larchevêque M. Tetrahedron Lett. 1995, 36: 2753 -
42d
See also Ref. [8c]
-
43a
Dess DB.Martin JC. J. Am. Chem. Soc. 1991, 113: 7277 -
43b
Dess DB.Martin JC. J. Org. Chem. 1983, 48: 4155 -
43c
Ireland RE.Liu LB. J. Org. Chem. 1993, 58: 2899 - 44
Heathcock CH.Pirrung MC.Sohn JE. J. Org. Chem. 1979, 44: 4294 - 45
Nadin A.Owens AP.Castro JL.Harrison T.Shearman MS. Bioorg. Med. Chem. Lett. 2003, 13: 37
References
Attempts to use allylsilanes 6 and 8 with other Lewis acids (TiCl4, BF3·OEt2) as well as attempts to mix these allylsilanes and the aldehydes 13a-c before addition of SnCl4 led to poor yields, loss of the Boc protecting group, and recovered starting material.
40Alcohols 27 and 28 have been prepared previously by Taddei and co-workers, but our 13C NMR data are not consistent with the described data reported in that work, although consistent with the expected structure. See Ref. [40]
47After re-examining our original 13C NMR spectrum of l-685-458 (3) we observed that in our first publication in Synlett (see Ref. [25] of this manuscript) we had mistakenly referenced the central line of the residual DMSO peak at 41.9 and not 39.7, as expected.