Subscribe to RSS
DOI: 10.1055/s-2003-40332
Preparation of Sialyl Donors Carrying Functionalized Ester Substituents: Effects on the Selectivity of Glycosylation
Publication History
Publication Date:
30 June 2003 (online)
Abstract
Methylthio sialyl donors having various ester substituents were prepared systematically. Nucleophilic displacement of methyl ester with Ph3SiSH and Cs2CO3 followed by in situ alkylation with RX or esterification with R-OH/DCC afforded these compounds in good yields. Glycosylations promoted by NIS-TfOH were examined in order to examine the effect of substituent of the ester portion. When conducted in CH3CN, enhanced α-selectivities were observed for cyanomethyl, 2-cyanoethyl, 2-cyanobenzyl, and 2-nitrobenzyl esters, implying that these substituents are effective enhancing the solvent effect of acetonitrile, possibly by stabilizing the β-oriented nitrilium ion.
Key words
sialic acid - glycosylation - stereoselective - substituent effect - selective deprotection
- 1
Angata T.Varki A. Chem. Rev. 2002, 102: 439 - Recent review:
-
2a
Boons G.-J.Demchnko AV. Chem. Rev. 2000, 100: 4539 -
2b
Halcomb RL.Chappell MD. J. Carbohydr. Chem. 2002, 21: 723 -
3a
Kanie O.Kiso M.Hasegawa A. J. Carbohydr. Chem. 1988, 7: 501 -
3b
Hasegawa A.Ohki H.Nagahama T.Ishida H.Kiso M. Carbohydr. Res. 1991, 212: 277 -
3c
Schmidt RR.Behrendt M.Toepfer A. Synlett 1990, 694 -
3d
Vankar YD.Vankar PS.Behrendt M.Schmidt RR. Tetrahedron 1991, 47: 9985 -
3e
Schmidt RR.Rücker E. Tetrahedron Lett. 1980, 21: 1421 -
3f
Birberg W.Lönn H. Tetrahedron Lett. 1991, 32: 7457 -
4a
Ito Y.Numata M.Sugimoto M.Ogawa T. J. Am. Chem. Soc. 1989, 111: 8508 -
4b
Ito Y.Ogawa T. Tetrahedron Lett. 1988, 29: 3987 -
4c
Kondo T.Abe H.Goto T. Chem. Lett. 1988, 1657 -
4d
Ercégovec T.Magnusson G. J. Org. Chem. 1995, 60: 3378 -
4e
Martichonok V.Whitesides GM. J. Am. Chem. Soc. 1996, 118: 8187 -
4f
Ercégovec T.Magnusson G. J. Org. Chem. 1996, 61: 179 -
4g
Castro-Palomino JC.Tsvetkov YE.Schmidt RR. J. Am. Chem. Soc. 1998, 120: 5434 - 5
Demchenko AV.Boons G.-J. Chem.-Eur. J. 1999, 5: 1278 - 6
Yu C.-S.Niikura K.Lin C.-C.Wong C.-H. Angew. Chem. Int. Ed. 2001, 40: 2900 - 7
De Meo C.Demchenko AV.Boons G.-J. Aust. J. Chem. 2002, 55: 131 - 8
Takahashi T.Tsukamoto H.Yamada H. Tetrahedron Lett. 1997, 38: 8223 - 9
Haberman JM.Gin DY. Org. Lett. 2001, 3: 1665 -
10a This
compound was prepared from corresponding 2-SAc derivative:
Hasegawa A.Nakamura J.Kiso M. J. Carbohydr. Chem. 1986, 5: 11 -
10b With Et2NH
and MeI in DMF:
Angus DI.von Itzstaein M.Kiefel MJ. Carbohydr. Res. 1994, 259: 293 - 11
Salomon CJ.Matta EG.Mascaretti OA. Tetrahedron 1993, 49: 3691 - 12
Birkofer L.Ritter A.Goller H. Chem. Ber. 1963, 3289 - 13
Brittain J.Gareau Y. Tetrahedron Lett. 1993, 34: 3363 - 15
Petit JM.Jaquinet J.-C.Sinaӱ P. Carbohydr. Res. 1980, 82: 130 - 16
Honeyman J. Methods in Carbohydr. Chem. 1962, 1: 116 -
17a
Pougny J.-R.Sinaӱ P. Tetrahedron Lett. 1976, 4073 -
17b
Schmidt RR.Rücker E. Tetrahedron Lett. 1980, 21: 1421 -
17c
Ratcliffe AJ.Fraser-Reid B. J. Chem. Soc., Perkin Trans. 1 1990, 747 -
17d
Braccini I.Derouet C.Esnault J.Hervé du Penhoat C.Mallet J.-M.Michon V.Sinaӱ P. Carbohydr. Res. 1993, 246: 23 - 19
Nakahara Y.Iijima H.Ogawa T. Tetrahedron Lett. 1994, 35: 3321 - 20
Paulsen H.Paar M.Hadamczvk D.Steiger K.-M. Carbohydr. Res. 1984, 131: C1 - 21
Sato S.Ito Y.Ogawa T. Tetrahedron Lett. 1988, 29: 4759
References
Typical procedure (compound 1h): To the solution of compound 1a (209 mg, 0.401 mmol), 2,6-di-t-butyl-4-cresol (18 mg, 0.08 mmol) and Ph3SiSH (352 mg, 1.20 mmol) in dry DMF (5 mL) was added Cs2CO3 (352 mg, 1.08 mmol) and the mixture was stirred at 80 °C for 8 h. After cooling down to ice-water temperature, 2-nitrobenzyl bromide (261 mg, 1.21 mmol) was added and stirring continued for 4 h at 0 °C. The reaction was saturated aq KHSO4 and extracted with EtOAc. The organic layer was washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by flash chromatography (hexane-EtOAc, 10:1-1:2) to give compound 1h (212 mg, 82%).
18Stabilization of anomeric cation by multiple molecules of acetonitrile was proposed. See refs. [3c] [d]
22NMR (CD3OD, 400 MHz) δ 1.72 (1 H, t, J = 12.0 Hz, H-3Neu5Ac), 1.85, 1,86, 1.97, 1.98, 1.99, and 2.10 (each 3 H, s, 6Ac), 2.71 (1 H, dd, J = 12.0 Hz, 4.0 Hz, H-3Neu5Ac), 3.37-3.42 (1 H, m, H-6Gal), 3.52-3.60 (3 H, m, H-5Gal, H-6Glc, H-2Gal), 3.83-3.88 (3 H, m, H-6Glc, H-6′Glc, H-5Gal), 3.97-4.09 (3 H, m, H-4Glc, CH 2=CHCH2, H-5Neu5Ac), 4.09 (1 H, dd, J = 11.2 Hz, 8.4 Hz, H-2Gal), 4.14 (1 H, dd, J = 12.4 Hz, 5.2 Hz, H-9Neu5Ac), 4.14 (1 H, dd, J = 12.4 Hz, 5.2 Hz, H-9Neu5Ac), 4.17-4.25 (2 H, m, H-9Neu5Ac, CH 2CH=CH2), 4.28 (1 H, dd, J = 11.2 Hz, 8.4 Hz), 4.39 (1 H, d, J = 12.0 Hz, Bn), 4.41 (1 H, dd, J = 12.4 Hz, 3.2 Hz, H-9Neu5Ac), 4.49 (1 H, d, J = 12.4 Hz, Bn), 4.54 (1 H, d, J = 12.0 Hz, Bn), 4.59 (1 H, d, J = 12.0 Hz, Bn), 4.69 (1 H, dd, J = 9.6 Hz, 2.4 Hz, H-3Gal), 4.76 (1 H, d, J = 12. 0 Hz, Bn), 4.81 (1 H, d, J = 7.2 Hz, H-1Gal), 4.88-4.96 (2 H, m, Bn), 4.98-5.03 (1 H, m, CH2CH=CH 2), 5.03-5.23 (2 H, m, CH2CH=CH 2, H-4Neu5Ac), 5.16 (1 H, d, J = 8.4 Hz, H-1Gal), 5.18 (1 H, d, J = 12.4 Hz, Bn), 5.38 (1 H, d, J = 2.4 Hz, H-4Gal), 5.39 (1 H, dd, J = 8.0, 2.4 Hz, H-7Neu5Ac), 5.66-5.77 (2 H, m, H-8Neu5Ac, CH2CH=CH2), 6.82-7.90 (24 H, m, Ar).