RSS-Feed abonnieren
DOI: 10.1055/s-2003-40862
Stereoselective Synthesis of Highly-Functionalized Cyclohexene Derivatives Having a Diethoxyphosphoryldifluoromethyl Functionality from Cyclohex-2-enyl-1-phosphates
Publikationsverlauf
Publikationsdatum:
24. Juli 2003 (online)
Abstract
Reaction of diethoxyphsphoryldifluoromethylzinc bromide (BrZnCF2PO3Et2) with highly functionalized cyclohex-2-enyl-1-phosphates in the presence of CuBr in THF was examined. The reaction provides a facile method for introducing a difluoromethylenephosphonate unit to the allylic position within a cyclic array in a stereo- and regioselective manner.
Key words
diastereoselectivity - regioselectivity - phosphonates - fluorine
- 1
Hunter T. Cell 2000, 100: 113 -
2a
Blackburn GM. Chem. Ind. (London) 1981, 134 -
2b
Blackburn GM.Kent DE.Kolmann F. J. Chem. Soc., Perkin Trans. 1 1984, 1149 -
2c
O’Hagan D.Rzepa HS. Chem. Commun. 1997, 645 -
2d
Thatcher GR.Campbell AS. J. Org. Chem. 1993, 58: 2272 -
2e
Taylor SD.Kotoris CC.Hum G. Tetrahedron 1999, 55: 12431 -
2f
Burton DJ.Yang Z.-Y. Tetrahedron 1992, 48: 189 -
3a
Herpin TF.Motherwell WB.Roberts BP.Roland S.Weibel J.-M. Tetrahedron 1997, 53: 15085 -
3b
Yokomatsu T.Murano T.Suemune K.Shibuya S. Tetrahedron 1997, 53: 815 -
3c
Yokomatsu T.Abe H.Sato M.Suemune K.Kihara T.Soeda S.Shimeno H.Shibuya S. Bioorg. Med. Chem. 1998, 6: 2495 -
3d
Yokomatsu T.Murano T.Umesue I.Soeda S.Shimeno H.Shibuya S. Bioorg. Med. Chem. Lett. 1999, 9: 529 -
3e
Shakespeare WC.Bohacek RS.Narula SS.Azimioara D.Yuan RW.Dalgarno DC.Madden LMC.Holt DA. Bioorg. Med. Chem. Lett. 1999, 9: 3109 -
3f
Yokomatsu T.Hayakawa Y.Kihara T.Koyanagi S.Soeda S.Shimeno H.Shibuya S. Bioorg. Med. Chem. 2000, 8: 2571 -
3g
Otaka A.Mitsuyama E.Kinoshita T.Tamamura H.Fujii N. J. Org. Chem. 2000, 65: 4888 -
3h
Berkowitz DB.Bose M.Pfannenstiel TJ.Doukov T. J. Org. Chem. 2000, 65: 4498 -
3i
Lopin C.Gautier A.Gouhier G.Piettre SR. J. Am. Chem. Soc. 2002, 124: 14668 -
4a
Blades K.Lapotre D.Percy JM. Tetrahedron Lett. 1997, 38: 5895 -
4b
Blades K.Lequeux TP.Percy JM. Chem. Commun. 1996, 1457 -
4c
Yokomatsu T.Katayama S.Shibuya S. Chem. Commun. 2001, 1878 -
4d
Butt AH.Kariuki BM.Percy JM.Spencer NS. Chem. Commun. 2002, 682 -
5a
Campbell AS.Thatcher GRJ. Tetrahedron Lett. 1991, 32: 2207 -
5b
Potter BVL.Lampe D. Angew. Chem., Int. Ed. Engl. 1995, 34: 1933 -
5c
Hinterding K.Alondo-Díaz D.Waldmann H. Angew. Chem. Int. Ed. 1998, 37: 688 -
5d
Miller DJ.Beaton MW.Wilkie J.Gani D. Chembiochem 2000, 1: 262 -
6a
Yokomatsu T.Suemune K.Murano T.Shibuya S. J. Org. Chem. 1996, 61: 7207 -
6b
Sprague LG.Burton DJ.Guneratne RD.Bennett WE. J. Fluorine Chem. 1990, 49: 75 -
6c
Zhang X.Burton DJ. Tetrahedron Lett. 2000, 41: 7791 -
7a
Yokomatsu T.Ichimura A.Kato J.Shibuya S. Synlett 2001, 287 -
7b
Burton DJ.Sparague LG. J. Org. Chem. 1989, 54: 613 - 8
Harris KJ.Gu Q.-M.Sih Y.-E.Cirdaukas G.Sih C. Tetrahedron Lett. 1991, 32: 3941 - 14
Chin Y.Levy GC. J. Am. Chem. Soc. 1984, 106: 6533 - 15
Jørgensen M.Iversen EH.Paulsen AL.Madsen R. J. Org. Chem. 2001, 66: 4630 - 16 The absolute stereochemistry of 8 was determined after its transformation
to (+)-14 by the Mitsunobu inversion
of the hydroxyl group with acetic acid (DEAD, Ph3P, THF).
The sign of the specific rotation was identical to that of the authentic
specimen prepared by resolution of (±)-14 according
to the method of Chung, see:
Kwon Y.-U.Chung S.-K. Org. Lett. 2001, 3: 3013 -
18a
Liu Z.Classon B.Samuelsson B. J. Org. Chem. 1990, 55: 4273 -
18b
Pakulski Z.Zamojski A. Carbohydr. Res. 1990, 205: 410 -
18c
Garegg PJ. Synthesis 1979, 469
References
Burton discussed mechanisms for reaction between 2 and allychlorides and proposed that the reaction may proceed through an SN2/SN2′ substitution mechanism. [7b]
10
trans-Isomer i of 4c reacted
with 2 under the same conditions to give
a 62:38 mixture of α-alkylated product ii and γ-alkylated
product iii in 71% yield (Scheme
[5]
). The
α-alkylated
product showed virtually no de. However, the
γ-alkylated
product showed modest de preferable to 1,2-trans-stereochemistry
showing that the reaction proceeded from the less-hindered syn-face of the phosphate to avoid the bulky
pivaloyl group. These results also support that the reactions would
involve a process for leaving the phosphate group prior to the carbon-carbon
bond formation.
Compounds 5c and 6c were not readily separated on column chromatography on silica gel. However, these products were also separated by using the difference in their chemical reactivity; selective deprotection of the Piv functional group of 5d occurred to give 6b upon treatment with ethylmagnesium bromide in diethyl ether at -15 °C.
12All new compounds gave satisfactory
spectroscopic and analytical data. Compound 5b obtained
as a colorless oil, [α]D
25 +55.2
(c 1.0, CHCl3). 1H
NMR (400 MHz, CDCl3):
δ = 5.94
(1 H, d, J = 10.6
Hz), 5.87 (1 H, dd, J = 10.6,
1.2 Hz), 4.31-4.22 (4 H, m), 3.01-2.85 (1 H, m),
2.21-2.12
(1 H, m), 2.10-2.01 (1 H,
m), 1.80-1.69 (3 H, m), 1.52-1.40 (1 H, m), 1.39
(3 H, t, J = 7.0
Hz), 1.38 (3 H, t, J = 7.0
Hz). 13C NMR (100 MHz, CDCl3): δ = 123.13
(t, J
CF = 4.3
Hz), 120.79 (dt, J
CF = 262.2
Hz, J
CP = 211.0
Hz), 115.36, 77.20, 66.04, 64.56 (d, J
CP = 6.9
Hz), 64.38 (d, J
CP = 6.9
Hz), 40.93 (dt, J
CF = 19.9
Hz, J
CP = 15.4
Hz), 31.04, 20.15, 16.27. 31P NMR (162
MHz, CDCl3): δ = 7.09 (t, J
PF = 107.9
Hz). 19F NMR (376 MHz, CDCl3): δ = -51.07
(1 F, ddd, J
FF = 300.8 MHz, J
FP = 107.9
Hz, J
FH = 16.2
Hz), -53.04 (1 F, ddd, J
FF = 300.8
MHz, J
FP = 107.9
Hz, J
FH = 13.9
Hz). IR (film): 3433, 1632, 1263 cm-1.
MS (ESI): m/z = 307 [M + Na]+. HRMS
(ESI) calcd for C11H19O4F2NaP:
307.0887. Found: 307.0876. Compound 6d obtained
as a colorless oil, [α]D
25
-23.4
(c 1.0, CHCl3). 1H
NMR (400 MHz, CDCl3): δ = 7.72-7.66
(4 H, m), 7.40-7.36 (6 H, m), 6.06 (1 H, dd, J = 10.3, 1.9
Hz), 5.72 (1 H, d, J = 8.8
Hz), 4.55 (1 H, s), 4.56-4.07 (4 H, m), 2.99-2.85
(1 H, m), 2.38-2.25 (1 H, m), 1.68-1.60 (m), 1.30-1.26
(6 H, m), 1.10 (3 H, s), 1.07 (3 H, s). 13C NMR
(100 MHz, CDCl3): δ = 135.8, 135.3,
132.0, 129.6, 123.0-116.0 (m), 118.0, 65.1, 64.3, 47.1
(dt, J
CF = 19.1
Hz, J
CP = 19.1
Hz), 27.3, 26.9, 26.5, 20.3, 19.1, 19.0, 16.2 (d, J
CP = 5.4
Hz). 31P NMR (162 MHz, CDCl3): δ = 7.00
(t, J
PF = 110.4
Hz). 19F NMR (376 MHz, CDCl3): δ = -47.13
(1 F, ddd, J
FF = 298.9
Hz, J
FP = 110.4
Hz, J
FH = 11.3
Hz),
-51.87 (1 F, ddd, J
FF = 298.9
Hz, J
FP = 110.4
Hz, J
FH = 24.8 Hz).
IR (film): 1657, 1271 cm-1. MS (EI): m/z = 523 [M+ + 1].
Anal. Calcd for C27H37F2O4PSi:
C, 62.05; H, 7.14. Found: C, 61.58; H, 6.99. Compound 13b obtained as an oil, [α]D
25 -51.4
(c 1.0, CHCl3). 1H
NMR (500 MHz, CDCl3):
δ = 8.12
(2 H, d. J = 7.3
Hz), 7.57 (1 H, dd, J = 7.3,
7.3 Hz), 7.44 (2 H, dd, J = 7.3,
7.3 Hz), 5.95 (1 H, d with small splits, J = 10.6
Hz), 5.92 (1 H, d, J = 10.6
Hz), 5.70 (1 H, dd, J = 8.8,
2.3 Hz), 4.72-4.71 (1 H, m), 4.64-4.62 (1 H, m), 4.28-4.15
(4 H, m), 3.64-3.55 (1 H, m), 1.37 (3 H, s), 1.33 (3 H,
s), 1.29 (6 H, t, J = 7.1
Hz). 13C NMR (125 MHz, CDCl3): δ = 165.73,
133.13, 130.06, 129.15, 128.30, 124.00-116.00 (m), 121.59,
110.04, 73.52, 72.58, 67.72 (d, J = 3.7 Hz), 64.81 (t, J = 5.6 Hz),
42.03 (dt, J = 15.3,
20.2 Hz), 27.51, 26.52, 16.24 (d, J = 5.7
Hz), 16.25 (d, J = 4.9 Hz). 31P
NMR (162 MHz, CDCl3): δ = 6.12 (t, J
PF = 106.7 Hz). 19F
NMR (376 MHz, CDCl3): δ = -47.73
(2 F, dd, J
FP = 106.7
Hz, J
FH = 15.8
Hz). IR (film): 1723, 1602, 1451, 1271 cm-1.
MS (ESI): m/z = 483 [M + Na]+.
HRMS (ESI) calcd for C21H27O7F2NaP:
483.1360. Found: 483.1316. Compound 19a obtained
as an oil, [α]D
25 -72.6
(c 1.0, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 6.03 (2 H,
broad s), 5.46 (1 H, dd, J = 5.8,
4.3 Hz), 4.63 (1 H, dd, J = 6.0,
2.4 Hz), 4.45 (1 H, t, J = 6.1
Hz), 4.32-4.23 (5 H, m), 3.48-3.39 (1 H, m), 2.07
(3 H, s), 1.40 (3 H, s), 1.37 (3 H, t, J = 6.9
Hz), 1.37 (3 H, s). 13C NMR (125 MHz,
CDCl3): δ = 170.35, 128.96, 124.00-116.00
(m), 122.17, 109.61, 72.57, 71.53, 69.53, 64.63 (dt, J
CF = 22.1
Hz, J
CP = 6.8
Hz), 39.90 (dt, J = 15.3,
19.8 Hz), 27.60, 25.90, 21.00, 16.30. 31P
NMR (162 MHz, CDCl3): δ = 6.25 (t, J
PF = 105.5
Hz). 19F NMR (376 MHz, CDCl3): δ = -48.79
(1 F, ddd, J
FF = 280.5
Hz, J
FP = 105.5
Hz, J
FH = 12.0
Hz), -50.22 (1 F, ddd, J
FF = 280.5 Hz, J
FP = 105.5
Hz, J
FH = 23.7
Hz). IR (film): 1750, 1372, 1271, 1233 cm-1.
MS (ESI): m/z = 421 [M + Na]+.
Anal. Calcd for C16H25F2O7P:
C, 48.24; H, 6.33. Found: C, 48.51; H, 6.41. Compound 20c obtained as an oil, [α]D
25 +3.85
(c 1.0, CHCl3). 1H
NMR (400 MHz, CDCl3): δ = 6.05 (1 H,
d with small splits, J = 10.0
Hz), 5.81 (1 H, ddd, J = 10.0,
3.1, 2.1 Hz), 4.63 (1 H, dd, J = 6.5,
4.3 Hz), 4.35-4.24 (4 H, m), 4.19-4.16 (1 H, m),
4.15-4.07 (2 H, m), 3.08-2.92 (1 H, m), 1.46 (3
H, m), 1.40-1.31 (9 H, m). 13C
NMR (100 MHz, CDCl3): δ = 132.1, 121.0,
108.9, 78.7, 70.0, 68.0, 47.3 (t, J
CF = 11.8
Hz), 27.6, 25.4, 16.3, 16.1. 31P NMR
(162 MHz, CDCl3): δ = 6.74 (dd, J
PF = 108.8,
102.9 Hz). 19F NMR (376 MHz, CDCl3): δ = -47.25
(1 F, ddd, J
FF = 303.4
Hz, J
FP = 102.9
Hz, J
FH = 16.2
Hz), -49.91 (1 F, ddd, J
FF = 304.4 Hz, J
FP = 108.8
Hz, J
FH = 16.2
Hz). IR (film): 3419, 1645, 1445, 1263 cm-1.
MS (ESI): m/z = 379 [M + Na]+.
HRMS (ESI) calcd for C14H23O6F2NaP:
379.1098. Found: 379.1081.
Compound 5b was chemically correlated to 5a and 5c to determine their trans-stereochemistry in the usual manner (Ac2O, pyridine, PivCl, pyridine).
17Although 12b and 13b were not readily separated by column chromatography on silica gel, 13b was isolated in pure state after osmium oxidation (cat. OsO4, NMO, quinuclidine, CH2Cl2). In the osmium oxidation, 12b was rapidly dihydoxylated but 13b remained unreacted to be isolated by column chromatography. The details will be described elsewhere.
19See the reference in note 16.
20Stereo- and regiochemistry of 20c was confirmed by 2D-NMR including HMBC, HMQC, COSY and NOESY.