References
1
Hunter T.
Cell
2000,
100:
113
2a
Blackburn GM.
Chem. Ind. (London)
1981,
134
2b
Blackburn GM.
Kent DE.
Kolmann F.
J. Chem. Soc., Perkin Trans. 1
1984,
1149
2c
O’Hagan D.
Rzepa HS.
Chem.
Commun.
1997,
645
2d
Thatcher GR.
Campbell AS.
J.
Org. Chem.
1993,
58:
2272
2e
Taylor SD.
Kotoris CC.
Hum G.
Tetrahedron
1999,
55:
12431
2f
Burton DJ.
Yang Z.-Y.
Tetrahedron
1992,
48:
189
3a
Herpin TF.
Motherwell WB.
Roberts BP.
Roland S.
Weibel J.-M.
Tetrahedron
1997,
53:
15085
3b
Yokomatsu T.
Murano T.
Suemune K.
Shibuya S.
Tetrahedron
1997,
53:
815
3c
Yokomatsu T.
Abe H.
Sato M.
Suemune K.
Kihara T.
Soeda S.
Shimeno H.
Shibuya S.
Bioorg.
Med. Chem.
1998,
6:
2495
3d
Yokomatsu T.
Murano T.
Umesue I.
Soeda S.
Shimeno H.
Shibuya S.
Bioorg. Med. Chem. Lett.
1999,
9:
529
3e
Shakespeare WC.
Bohacek RS.
Narula SS.
Azimioara D.
Yuan RW.
Dalgarno DC.
Madden LMC.
Holt DA.
Bioorg. Med. Chem. Lett.
1999,
9:
3109
3f
Yokomatsu T.
Hayakawa Y.
Kihara T.
Koyanagi S.
Soeda S.
Shimeno H.
Shibuya S.
Bioorg.
Med. Chem.
2000,
8:
2571
3g
Otaka A.
Mitsuyama E.
Kinoshita T.
Tamamura H.
Fujii N.
J.
Org. Chem.
2000,
65:
4888
3h
Berkowitz DB.
Bose M.
Pfannenstiel TJ.
Doukov T.
J.
Org. Chem.
2000,
65:
4498
3i
Lopin C.
Gautier A.
Gouhier G.
Piettre SR.
J. Am. Chem. Soc.
2002,
124:
14668
4a
Blades K.
Lapotre D.
Percy JM.
Tetrahedron Lett.
1997,
38:
5895
4b
Blades K.
Lequeux TP.
Percy JM.
Chem. Commun.
1996,
1457
4c
Yokomatsu T.
Katayama S.
Shibuya S.
Chem.
Commun.
2001,
1878
4d
Butt AH.
Kariuki BM.
Percy JM.
Spencer NS.
Chem. Commun.
2002,
682
5a
Campbell AS.
Thatcher GRJ.
Tetrahedron Lett.
1991,
32:
2207
5b
Potter BVL.
Lampe D.
Angew. Chem.,
Int. Ed. Engl.
1995,
34:
1933
5c
Hinterding K.
Alondo-Díaz D.
Waldmann H.
Angew.
Chem. Int. Ed.
1998,
37:
688
5d
Miller DJ.
Beaton MW.
Wilkie J.
Gani D.
Chembiochem
2000,
1:
262
6a
Yokomatsu T.
Suemune K.
Murano T.
Shibuya S.
J. Org.
Chem.
1996,
61:
7207
6b
Sprague LG.
Burton DJ.
Guneratne RD.
Bennett WE.
J.
Fluorine Chem.
1990,
49:
75
6c
Zhang X.
Burton DJ.
Tetrahedron Lett.
2000,
41:
7791
7a
Yokomatsu T.
Ichimura A.
Kato J.
Shibuya S.
Synlett
2001,
287
7b
Burton DJ.
Sparague LG.
J.
Org. Chem.
1989,
54:
613
8
Harris KJ.
Gu Q.-M.
Sih Y.-E.
Cirdaukas G.
Sih C.
Tetrahedron
Lett.
1991,
32:
3941
9 Burton discussed mechanisms for reaction
between 2 and allychlorides and proposed
that the reaction may proceed through an SN 2/SN 2′ substitution
mechanism.
[7b ]
10
trans -Isomer i of 4c reacted
with 2 under the same conditions to give
a 62:38 mixture of α-alkylated product ii and γ-alkylated
product iii in 71% yield (Scheme
[5 ]
). The α-alkylated
product showed virtually no de. However, the γ-alkylated
product showed modest de preferable to 1,2-trans -stereochemistry
showing that the reaction proceeded from the less-hindered syn -face of the phosphate to avoid the bulky
pivaloyl group. These results also support that the reactions would
involve a process for leaving the phosphate group prior to the carbon-carbon
bond formation.
Scheme 5
11 Compounds 5c and 6c were not readily separated on column chromatography
on silica gel. However, these products were also separated by using
the difference in their chemical reactivity; selective deprotection
of the Piv functional group of 5d occurred
to give 6b upon treatment with ethylmagnesium
bromide in diethyl ether at -15 °C.
12 All new compounds gave satisfactory
spectroscopic and analytical data. Compound 5b obtained
as a colorless oil, [α]D
25 +55.2
(c 1.0, CHCl3 ). 1 H
NMR (400 MHz, CDCl3 ): δ = 5.94
(1 H, d, J = 10.6
Hz), 5.87 (1 H, dd, J = 10.6,
1.2 Hz), 4.31-4.22 (4 H, m), 3.01-2.85 (1 H, m),
2.21-2.12 (1 H, m), 2.10-2.01 (1 H,
m), 1.80-1.69 (3 H, m), 1.52-1.40 (1 H, m), 1.39
(3 H, t, J = 7.0
Hz), 1.38 (3 H, t, J = 7.0
Hz). 13 C NMR (100 MHz, CDCl3 ): δ = 123.13
(t, J
CF = 4.3
Hz), 120.79 (dt, J
CF = 262.2
Hz, J
CP = 211.0
Hz), 115.36, 77.20, 66.04, 64.56 (d, J
CP = 6.9
Hz), 64.38 (d, J
CP = 6.9
Hz), 40.93 (dt, J
CF = 19.9
Hz, J
CP = 15.4
Hz), 31.04, 20.15, 16.27. 31 P NMR (162
MHz, CDCl3 ): δ = 7.09 (t, J
PF = 107.9
Hz). 19 F NMR (376 MHz, CDCl3 ): δ = -51.07
(1 F, ddd, J
FF = 300.8 MHz, J
FP = 107.9
Hz, J
FH = 16.2
Hz), -53.04 (1 F, ddd, J
FF = 300.8
MHz, J
FP = 107.9
Hz, J
FH = 13.9
Hz). IR (film): 3433, 1632, 1263 cm-1 .
MS (ESI): m/z = 307 [M + Na]+ . HRMS
(ESI) calcd for C11 H19 O4 F2 NaP:
307.0887. Found: 307.0876. Compound 6d obtained
as a colorless oil, [α]D
25
-23.4
(c 1.0, CHCl3 ). 1 H
NMR (400 MHz, CDCl3 ): δ = 7.72-7.66
(4 H, m), 7.40-7.36 (6 H, m), 6.06 (1 H, dd, J = 10.3, 1.9
Hz), 5.72 (1 H, d, J = 8.8
Hz), 4.55 (1 H, s), 4.56-4.07 (4 H, m), 2.99-2.85
(1 H, m), 2.38-2.25 (1 H, m), 1.68-1.60 (m), 1.30-1.26
(6 H, m), 1.10 (3 H, s), 1.07 (3 H, s). 13 C NMR
(100 MHz, CDCl3 ): δ = 135.8, 135.3,
132.0, 129.6, 123.0-116.0 (m), 118.0, 65.1, 64.3, 47.1
(dt, J
CF = 19.1
Hz, J
CP = 19.1
Hz), 27.3, 26.9, 26.5, 20.3, 19.1, 19.0, 16.2 (d, J
CP = 5.4
Hz). 31 P NMR (162 MHz, CDCl3 ): δ = 7.00
(t, J
PF = 110.4
Hz). 19 F NMR (376 MHz, CDCl3 ): δ = -47.13
(1 F, ddd, J
FF = 298.9
Hz, J
FP = 110.4
Hz, J
FH = 11.3
Hz), -51.87 (1 F, ddd, J
FF = 298.9
Hz, J
FP = 110.4
Hz, J
FH = 24.8 Hz).
IR (film): 1657, 1271 cm-1 . MS (EI): m/z = 523 [M+ + 1].
Anal. Calcd for C27 H37 F2 O4 PSi:
C, 62.05; H, 7.14. Found: C, 61.58; H, 6.99. Compound 13b obtained as an oil, [α]D
25 -51.4
(c 1.0, CHCl3 ). 1 H
NMR (500 MHz, CDCl3 ): δ = 8.12
(2 H, d. J = 7.3
Hz), 7.57 (1 H, dd, J = 7.3,
7.3 Hz), 7.44 (2 H, dd, J = 7.3,
7.3 Hz), 5.95 (1 H, d with small splits, J = 10.6
Hz), 5.92 (1 H, d, J = 10.6
Hz), 5.70 (1 H, dd, J = 8.8,
2.3 Hz), 4.72-4.71 (1 H, m), 4.64-4.62 (1 H, m), 4.28-4.15
(4 H, m), 3.64-3.55 (1 H, m), 1.37 (3 H, s), 1.33 (3 H,
s), 1.29 (6 H, t, J = 7.1
Hz). 13 C NMR (125 MHz, CDCl3 ): δ = 165.73,
133.13, 130.06, 129.15, 128.30, 124.00-116.00 (m), 121.59,
110.04, 73.52, 72.58, 67.72 (d, J = 3.7 Hz), 64.81 (t, J = 5.6 Hz),
42.03 (dt, J = 15.3,
20.2 Hz), 27.51, 26.52, 16.24 (d, J = 5.7
Hz), 16.25 (d, J = 4.9 Hz). 31 P
NMR (162 MHz, CDCl3 ): δ = 6.12 (t, J
PF = 106.7 Hz). 19 F
NMR (376 MHz, CDCl3 ): δ = -47.73
(2 F, dd, J
FP = 106.7
Hz, J
FH = 15.8
Hz). IR (film): 1723, 1602, 1451, 1271 cm-1 .
MS (ESI): m/z = 483 [M + Na]+ .
HRMS (ESI) calcd for C21 H27 O7 F2 NaP:
483.1360. Found: 483.1316. Compound 19a obtained
as an oil, [α]D
25 -72.6
(c 1.0, CHCl3 ). 1 H
NMR (500 MHz, CDCl3 ): δ = 6.03 (2 H,
broad s), 5.46 (1 H, dd, J = 5.8,
4.3 Hz), 4.63 (1 H, dd, J = 6.0,
2.4 Hz), 4.45 (1 H, t, J = 6.1
Hz), 4.32-4.23 (5 H, m), 3.48-3.39 (1 H, m), 2.07
(3 H, s), 1.40 (3 H, s), 1.37 (3 H, t, J = 6.9
Hz), 1.37 (3 H, s). 13 C NMR (125 MHz,
CDCl3 ): δ = 170.35, 128.96, 124.00-116.00
(m), 122.17, 109.61, 72.57, 71.53, 69.53, 64.63 (dt, J
CF = 22.1
Hz, J
CP = 6.8
Hz), 39.90 (dt, J = 15.3,
19.8 Hz), 27.60, 25.90, 21.00, 16.30. 31 P
NMR (162 MHz, CDCl3 ): δ = 6.25 (t, J
PF = 105.5
Hz). 19 F NMR (376 MHz, CDCl3 ): δ = -48.79
(1 F, ddd, J
FF = 280.5
Hz, J
FP = 105.5
Hz, J
FH = 12.0
Hz), -50.22 (1 F, ddd, J
FF = 280.5 Hz, J
FP = 105.5
Hz, J
FH = 23.7
Hz). IR (film): 1750, 1372, 1271, 1233 cm-1 .
MS (ESI): m/z = 421 [M + Na]+ .
Anal. Calcd for C16 H25 F2 O7 P:
C, 48.24; H, 6.33. Found: C, 48.51; H, 6.41. Compound 20c obtained as an oil, [α]D
25 +3.85
(c 1.0, CHCl3 ). 1 H
NMR (400 MHz, CDCl3 ): δ = 6.05 (1 H,
d with small splits, J = 10.0
Hz), 5.81 (1 H, ddd, J = 10.0,
3.1, 2.1 Hz), 4.63 (1 H, dd, J = 6.5,
4.3 Hz), 4.35-4.24 (4 H, m), 4.19-4.16 (1 H, m),
4.15-4.07 (2 H, m), 3.08-2.92 (1 H, m), 1.46 (3
H, m), 1.40-1.31 (9 H, m). 13 C
NMR (100 MHz, CDCl3 ): δ = 132.1, 121.0,
108.9, 78.7, 70.0, 68.0, 47.3 (t, J
CF = 11.8
Hz), 27.6, 25.4, 16.3, 16.1. 31 P NMR
(162 MHz, CDCl3 ): δ = 6.74 (dd, J
PF = 108.8,
102.9 Hz). 19 F NMR (376 MHz, CDCl3 ): δ = -47.25
(1 F, ddd, J
FF = 303.4
Hz, J
FP = 102.9
Hz, J
FH = 16.2
Hz), -49.91 (1 F, ddd, J
FF = 304.4 Hz, J
FP = 108.8
Hz, J
FH = 16.2
Hz). IR (film): 3419, 1645, 1445, 1263 cm-1 .
MS (ESI): m/z = 379 [M + Na]+ .
HRMS (ESI) calcd for C14 H23 O6 F2 NaP:
379.1098. Found: 379.1081.
13 Compound 5b was
chemically correlated to 5a and 5c to determine their trans -stereochemistry
in the usual manner (Ac2 O, pyridine, PivCl, pyridine).
14
Chin Y.
Levy GC.
J. Am. Chem. Soc.
1984,
106:
6533
15
Jørgensen M.
Iversen EH.
Paulsen AL.
Madsen R.
J. Org. Chem.
2001,
66:
4630
16 The absolute stereochemistry of 8 was determined after its transformation
to (+)-14 by the Mitsunobu inversion
of the hydroxyl group with acetic acid (DEAD, Ph3 P, THF).
The sign of the specific rotation was identical to that of the authentic
specimen prepared by resolution of (±)-14 according
to the method of Chung, see: Kwon Y.-U.
Chung S.-K.
Org. Lett.
2001,
3:
3013
17 Although 12b and 13b were not readily separated by column chromatography
on silica gel, 13b was isolated in pure
state after osmium oxidation (cat. OsO4 , NMO, quinuclidine, CH2 Cl2 ).
In the osmium oxidation, 12b was rapidly dihydoxylated
but 13b remained unreacted to be isolated
by column chromatography. The details will be described elsewhere.
18a
Liu Z.
Classon B.
Samuelsson B.
J. Org. Chem.
1990,
55:
4273
18b
Pakulski Z.
Zamojski A.
Carbohydr. Res.
1990,
205:
410
18c
Garegg PJ.
Synthesis
1979,
469
19 See the reference in note 16.
20 Stereo- and regiochemistry of 20c was confirmed by 2D-NMR including HMBC,
HMQC, COSY and NOESY.