RSS-Feed abonnieren
DOI: 10.1055/s-2003-42119
Synthesis of Donor-Acceptor Substituted Molecular Caltrops: Strategic Use of an AB3 Synthon Based on a Tetraphenylmethane Core
Publikationsverlauf
Publikationsdatum:
21. November 2003 (online)
Abstract
Using a tetraphenylmethane based AB3 tecton, a facile synthetic route to donor-acceptor substituted unsymmetrical molecular caltrops is described. The former compound was readily prepared in two steps from the cheap commercial dye New Fuchsin.
Key words
molecular caltrops - dyad - tetraphenylmethane - Sonogashira coupling - Heck reaction
-
1a
Turro NJ. Modern Molecular Photochemistry Benjamin-Cumming; Menlo Park CA: 1978. -
1b
Fox MA.Chanon M. Photoinduced Electron Transfer Elsevier; Amsterdam: 1988. -
1c
Gust D.Moore TA. Adv. Photochem. 1991, 16: 1 -
1d
Kavarnos GJ. Fundamentals of Photoinduced Electron Transfer VCH; Weinheim: 1993. -
1e
Gust D.Moore TA.Moore AL. Acc. Chem. Res. 1993, 26: 198 -
1f
Häder D.-P. Photosynthese Thieme; Stuttgart: 1999. -
2a
Guldi DM.Maggini M.Scorrano G.Prato M. J. Am. Chem. Soc. 1997, 119: 974 -
2b
Jolliffe KA.Langford SJ.Ranasinghe MG.Shephard M.Padden-Row MN. J. Org. Chem. 1999, 64: 1238 -
2c
Imahori H.Tamaki K.Guldi DM.Luo C.Fujitsuka M.Ito O.Sakata Y.Fukuzumi S. J. Am. Chem. Soc. 2001, 123: 2607 -
2d
Sakomura M.Lin S.Moore TA.Moore AL.Gust D.Fujihira M. J. Phys. Chem. A 2002, 106: 2218 ; and references cited therein -
3a
Vögtle F.Plevoets M.Nieger M.Azzellini GC.Credi A.De Cola L.De Marchis V.Venturi M.Balzani V. J. Am. Chem. Soc. 1999, 121: 6290 -
3b
Ceroni P.Vicinelli V.Maestri M.Balzani V.Müller WM.Müller U.Hahn U.Osswald F.Vögtle F. New J. Chem. 2001, 25: 989 -
4a
Reichert VR.Mathias LJ. Macromolecules 1994, 27: 7030 -
4b
Möngin O.Goassauer A. Tetrahedron 1997, 53: 6835 -
4c
Constable EC.Eich O.Housecroft CE.Johnstone LA. Chem. Commun. 1998, 2661 -
4d
Oldham WJ.Lahicotte RJ.Bazan GC. J. Am. Chem. Soc. 1998, 120: 2987 -
4e
Wang S.Oldham WJ.Hudack RA.Bazan GC. J. Am. Chem. Soc. 2000, 122: 5695 -
4f
Robinson MR.Wang S.Bazan GC.Cao Y. Adv. Mater. 2000, 12: 1701 -
4g
Constable EC.Eich O.Housecroft CE.Rees DC. Inorg. Chim. Acta 2000, 300-302: 158 -
4h
Zimmerman TJ.Freundel O.Gompper R.Müller TJJ. Eur. J. Org. Chem. 2000, 3305 -
4i
Aujard I.Baltaze J.-P.Baudin J.-B.Cogné E.Ferrage F.Jullien L.Perez E.Prévost V.Qian LH.Ruel O. J. Am. Chem. Soc. 2001, 123: 8177 -
4j
Lambert C.Gaschler W.Noll G.Weber M.Schmalzlin E.Brauchle C.Meerholz K. J. Chem. Soc., Perkin Trans. 2 2001, 964 -
4k
Yeh H.-C.Lee R.-H.Chan L.-H.Lin T.-YJ.Chen C.-T.Balasubramaniam E.Tao Y.-T. Chem. Mater. 2001, 13: 2788 -
4l
Maus M.De R.Lor M.Weil T.Mitra S.Wiesler UM.Herrman A.Hofkens J.Vosch T.Müllen K.De Schryver FC. J. Am. Chem. Soc. 2001, 123: 7668 -
4m
Weil T.Wiesler UM.Herrman A.Bauer R.Hofkens J.De Schryver FC.Müllen K. J. Am. Chem. Soc. 2001, 123: 8101 -
4n
Zimmerman TJ.Müller TJJ. Synthesis 2002, 1157 -
4o
Zimmerman TJ.Müller TJJ. Eur. J. Org. Chem. 2002, 2269 -
4p
Summers MA.Robinson MR.Bazan GC.Buratto SK. Chem. Phys. Lett. 2002, 364: 542 -
4q
Li Q.Rukavishnikov AV.Petukhov PA.Zaikova TO.Keana JFW. Org. Lett. 2002, 4: 3631 -
4r
Grimsdale AC.Bauer R.Weil T.Tchebotareva N.Wu J.Watson M.Müllen K. Synthesis 2002, 1229 -
4s
Sengupta S.Purkayastha P. Org. Biomol. Chem. 2003, 1: 436 ; and references cited therein - For less common centrally tetrahedral scaffolds viz. 9,9′-spirobifluorene and tetraphenylsilane, see:
-
5a
Tour JM. Chem. Rev. 1996, 96: 537 -
5b
Salbeck J.Yu N.Bauer J.Weissortel F.Bestgen H. Synth. Met. 1997, 91: 209 -
5c
Baurele P.Mitschke U.Mena-Osteritz E.Sokolowski M.Muller D.Grop M.Meerholz K. Proc. SPIE-Int. Soc. Opt. Engl. 1998, 3476: 32 -
5d
Pei J.Ni J.Zhou X.-H.Cao X.-Y.Lai Y.-H. J. Org. Chem. 2002, 67: 4924 -
5e
Chan L.-H.Lee R.-H.Hsieh C.-F.Yeh H.-C.Chen C.-T. J. Am. Chem. Soc. 2002, 124: 6469 -
5f
Also see ref. [4e]
-
6a
Yao Y.Tour JM. J. Org. Chem. 1999, 68: 1968 -
6b
Hirayama D.Takiyama K.Aso Y.Otsubo T.Hasobe T.Yamada H.Imahori H.Fukuzumi S.Sakata Y. J. Am. Chem. Soc. 2002, 124: 532 -
6c
Galoppini E.Guo W.Zhang W.Hoertz PG.Qu P.Meyer GJ. J. Am. Chem. Soc. 2002, 124: 7801 -
6d
Piotrowiak P.Galoppini E.Wei Q.Meyer GJ.Weiwiór P. J. Am. Chem. Soc. 2003, 125: 5278 -
6e
Li Q.Rukavishnikov AV.Petukhov PA.Zaikova TO.Jin C.Keana JFW. J. Org. Chem. 2003, 68: 4862 -
6f
Jian H.Tour JM. J. Org. Chem. 2003, 68: 5091 -
7a
Sengupta S.Sadhukhan SK. Tetrahedron Lett. 1998, 39: 1237 -
7b
Sengupta S.Sadhukhan SK. Tetrahedron Lett. 1999, 40: 9157 -
7c
Sengupta S.Sadhukhan SK. Organometallics 2001, 20: 1889 -
7d
Sengupta S.Sadhukhan SK.Muhuri S. Tetrahedron Lett. 2002, 43: 3521 -
7e
Sengupta S.Sadhukhan SK.Singh RS. Indian J. Chem., Sect. B 2002, 41: 642 -
7f
Sengupta S.Sadhukhan SK. Indian J. Chem., Sect. B 2003, 42: 858 -
8a
Sengupta S.Sadhukhan SK. J. Mater. Chem. 2000, 1997 -
8b
Sengupta S.Sadhukhan SK. J. Chem. Soc., Perkin Trans. 1 2000, 4332 -
10a
Sonogashira K. In Comprehensive Organic Synthesis Vol. 3:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.551 -
10b
Sonogashira K. In Metal-catalyzed Cross-coupling ReactionsDiederich F.Stang P. Wiley-VCH; Weinheim: 1998. p.203 -
13a
Jeffery T. Tetrahedron 1996, 52: 10113 -
13b
de Meijere A.Bräse S. In Metal-catalyzed Cross-coupling ReactionsDiederich F.Stang P. Wiley-VCH; Weinheim: 1998. p.99 -
13c
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 - 15
Meier H. Angew. Chem., Int. Ed. Engl. 1992, 31: 1399
References
Compound 5: mp 206-207 °C (MeOH). IR (KBr): 3400, 1605, 1500, 1460, 1370 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.33 (s, 9 H), 6.65 (dd, J = 8.4, 2.1 Hz, 3 H), 6.70 (d, J = 6.6 Hz, 2 H), 6.99 (d, J = 6.6 Hz, 2 H), 7.02 (d, J = 2.1 Hz, 3 H), 7.65 (d, J = 8.4 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 28.2, 63.3, 98.7, 114.5, 130.1, 131.9, 138.0, 140.5, 146.5, 153.6.
11Representative Procedure for Three-fold Sonogashira Couplings on 5: PdCl2(PPh3)2 (5 mg) was added to a degassed solution of 5 (0.10 g, 0.13 mmol), phenyl acetylene (0.08 g, 0.8 mmol) and CuI (4 mg) in a mixture of DMF (3 mL) and Et3N (2 mL). The reaction mixture was stirred at r.t. for 16 h. It was then concentratedd under reduced pressure, diluted with water and extracted with CH2Cl2. The organic layer was dried and the solvent removed under reduced pressure. The residue was purified by silica gel chromatography (10% EtOAc in light petroleum) to give 6 (0.057 g, 66%) as a white solid; mp 126-127 °C (CHCl3-MeOH). IR (KBr): 3410, 1600, 1520, 1465, 1360 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.43 (s, 9 H), 6.73 (d, J = 8.6 Hz, 2 H), 6.90-7.16 (m, 8 H), 7.29-7.48 (m, 12 H), 7.49-7.62 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 21.0, 64.5, 88.5, 93.8, 114.5, 121.2, 123.9, 125.6, 128.3, 128.7, 128.9, 130.1, 131.9, 132.2, 138.0, 139.5, 147.0, 156.5. 8: mp 105-106 °C (MeOH). IR (KBr): 3290, 3000, 2910, 2090, 1595, 1480 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.35 (s, 9 H), 3.26 (s, 3 H), 6.71 (d, J = 8.7 Hz, 2 H), 6.93 (d, J = 8 Hz, 3 H), 7.00 (d, J = 8.7 Hz, 2 H), 7.01 (s, 3 H), 7.33 (d, J = 8 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 20.9, 64.0, 80.9, 82.3, 114.5, 119.6, 128.3, 131.7, 132.1, 138.0, 139.9, 147.0, 153.7.
12
Compound 9: mp 130-132 °C (MeOH). IR (KBr): 2916, 1596, 1521, 1500, 1442, 1344 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.36 (s, 9 H), 5.08 (s, 2 H), 6.78 (d, J = 9 Hz, 2 H), 6.92 (dd, J = 8.1, 2 Hz, 3 H), 7.01 (d, J = 2 Hz, 3 H), 7.06 (d, J = 9 Hz, 2 H), 7.25-7.33 (m, 11 H), 7.42-7.46 (m, 6 H), 7.54 (d, J = 8.1 Hz, 3 H), 8.18 (d, J = 9 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 21.4, 64.5, 69.1, 88.5, 93.8, 114.2, 121.2, 123.9, 124.2, 128.0, 128.5, 128.7, 128.9, 131.3, 131.4, 131.9, 132.2, 132.6, 139.5, 139.8, 144.8, 147.0, 156.7.
Compound 10: mp 132-135 °C (MeOH). IR (KBr): 2900, 2100, 1590, 1518, 1487, 1350 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.36 (s, 9 H), 3.24 (s, 3 H), 5.09 (s, 2 H), 6.73 (d, J = 9 Hz, 2 H), 6.91 (dd, J = 8, 1.8 Hz, 3 H), 7.00 (d, J = 1.8 Hz, 3 H), 7.06 (d, J = 9 Hz, 2 H), 7.30-7.36 (m, 5 H), 8.08 (d, J = 8.7 Hz, 2 H).
Compound 13: mp 203-205 °C. IR (KBr): 2902, 1604, 1521, 1508, 1456, 1344, 1242 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 1.33 (s, 27 H), 2.36 (s, 9 H), 5.16 (s, 2 H), 6.87 (d, J = 9 Hz, 2 H), 7.00 (d, J = 16.2 Hz, 3 H), 7.05-7.12 (m, 6 H), 7.24 (d, J = 9 Hz, 2 H), 7.28 (d, J = 16.2 Hz, 3 H), 7.35-7.53 (m, 14 H), 7.62 (d, J = 9 Hz, 3 H), 8.25 (d, J = 9 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 20.7, 31.7, 35.0, 64.1, 69.0, 114.0, 124.2, 124.4, 124.8, 125.8, 126.0, 126.6, 128.0, 129.5, 129.9, 130.3, 132.6, 133.1, 134.4, 135.1, 135.4, 140.5, 145.0, 146.4, 156.5.
Compound 11: mp 201-202 °C. IR (KBr): 3290, 1595, 1500, 1445, 1260 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.35 (s, 9 H), 6.73 (d, J = 8.7 Hz, 2 H), 7.00 (d, J = 16.2 Hz, 3 H), 7.05-7.11 (m, 6 H), 7.14 (d, J = 8.7 Hz, 2 H), 7.20-7.31 (m, 6 H), 7.34 (d, J = 5.4 Hz, 3 H), 7.35 (d, J = 16.2 Hz, 3 H), 7.45-7.54 (m, 9 H). 13C NMR (75 MHz, CDCl3): δ = 20.2, 63.7, 114.3, 124.4, 126.1, 126.5, 127.4, 128.6, 129.1, 129.7, 132.2, 132.7, 133.7, 134.7, 137.8, 139.2, 146.3, 153.4. Compound 12: mp 220-224 °C (CHCl3-MeOH). IR (KBr): 3300, 1600, 1510, 1440, 1280 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.33 (s, 27 H), 2.34 (s, 9 H), 4.67 (br s, 1 H), 6.72 (d, J = 8.5 Hz, 2 H), 6.98 (d, J = 16 Hz, 3 H), 7.04-7.11 (m, 6 H), 7.14 (d, J = 8.3 Hz, 2 H), 7.26 (d, J = 16 Hz, 3 H), 7.37 (d, J = 8.2 Hz, 6 H), 7.45 (d, J = 8.8 Hz, 6 H), 7.48 (d, J = 9.2 Hz, 3 H).