RSS-Feed abonnieren
DOI: 10.1055/s-2004-815416
A Remarkable Rate Acceleration of the One-Pot Three-Component Cyclocondensation Reaction at Room Temperature: An Expedient Synthesis of Mitotic Kinesin Eg5 Inhibitor Monastrol
Publikationsverlauf
Publikationsdatum:
12. Januar 2004 (online)

Abstract
A general and practical route for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones by a one-pot condensation of aldehydes, β-ketoesters, and urea is described using trimethylsilyltriflate (1 mol%)-mediated cyclocondensation reaction at room temperature within 15 minutes. Yields are significantly higher than utilizing classical Biginelli reaction conditions. Synthesis of mitotic Kinesin Eg5 inhibitor monastrol has been achieved in 95% isolated yield.
Key words
mitotic - monastrol - 3,4-dihydropyrimidin-2(1H)-ones - Biginelli reaction
- Passerini three-component and Ugi four-component condensations are the most popular among many other reactions for their wide scope and synthetic utility. For reviews, see:
-
1a
Bienayme H.Hulme C.Oddon G.Schmitt P. Chem.-Eur. J. 2000, 6: 3321 -
1b
Domling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 -
2a
Dolle RE.Nelson KH. J. Comb. Chem. 1999, 1: 235 -
2b
Obrecht D.Villalgordo JM. In Solid-Supported Combinatorial and Parallel Synthesis of Small Molecular Weight Compounds LibrariesBaldwin JE.Williams RM. Pergamon Press; New York: 1998. -
2c
Gordon EM.Gallop MA.Patel DV. Acc. Chem. Res. 1996, 29: 144 - 3
Biginelli P. Gazz. Chim. Ital. 1893, 23: 360 - For a review, see:
-
4a
Kappe CO. Tetrahedron 1993, 49: 6937 ; and references cited therein -
4b
Kappe CO. Acc. Chem. Res. 2000, 33: 879 -
6a
Atwal KS.Rovnyak GC.Kimball SD.Floyd DM.Moreland S.Swanson BN.Gougoutas JZ.Schwartz J.Smillie KM.Malley MF. J. Med. Chem. 1990, 33: 2629 - 6b Rovnyak G. C., Kimball S. D., Beyer B., Cucinotta G., DiMarco J. D., Gougoutas J. Z., Hedberg A., Malley M. F., McCarthy J. P., Zhang R., Moreland S.; J. Med. Chem.; 1995, 38: 119; and references therein
- 7
Mayer TU.Kapoor TM.Haggarty SJ.King RW.Schreiber SL.Mitchison TJ. Science 1999, 286: 971 -
8a
Atwal KS.Rovnyak GC.O’Reilly BC.Schwartz J. J. Org. Chem. 1989, 54: 5898 -
8b
Barluenga J.Tomas M.Ballesteros A.Lopez LA. Tetrahedron Lett. 1989, 30: 4573 - 9
O’Reilly BC.Atwal KS. Heterocycles 1987, 26: 1185 -
10a
Wipf P.Cunningham A. Tetrahedron Lett. 1995, 36: 7819 -
10b
Studer A.Jeger P.Wipf P.Curran DP. J. Org. Chem. 1997, 62: 2917 -
10c
Hu EH.Sidler DR.Dolling U.-H. J. Org. Chem. 1998, 63: 3454 -
10d
Kappe CO.Falsone SF. Synlett 1998, 718 -
10e
Singh K.Singh J.Deb PK.Singh H. Tetrahedron 1999, 55: 12873 -
10f
Bigi F.Carloni S.Frullanti B.Maggi R.Sartori G. Tetrahedron Lett. 1999, 40: 3465 -
10g
Ranu BC.Hajra A.Jana U. J. Org. Chem. 2000, 65: 6270 -
10h
Lu J.Ma HR. Synlett 2000, 63 -
10i
Dondoni A.Massi A. Tetrahedron Lett. 2001, 42: 7975 -
10j
Kumar AK.Kasthuraiah M.Reddy SC.Reddy DC. Tetrahedron Lett. 2001, 42: 7873 -
10k
Fu N.Yuan Y.Cao Z.Wang S.Wang J.Peppe C. Tetrahedron 2002, 58: 4801 - 12
Paquette LA. Encyclopedia of Reagents for Organic Synthesis Vol. 7: John Wiley & Sons; Chichester: 1995. p.5315-5317 - 13
Folkers K.Harwood HJ.Johnson TB. J. Am. Chem. Soc. 1932, 54: 3751 - 14
Eynde JJV.Audiart N.Canonne N.Michel S.Haverbeke YV.Kappe CO. Heterocycles 1997, 45: 1967
References
Biginelli stated (ref. [3] ) that his research was inspired by the earlier work of R. Behrend on the urea-ketoester coupling and U. Schiff on the urea-aldehyde coupling.
11
Typical Procedure for the Synthesis of DHPM’s 4b: A solution of 4-methoxybenzaldehyde (272 mg, 2.0 mmol), urea (120 mg, 2.0 mmol), EtOAc (260 mg, 2.0 mmol) in MeCN (2 mL) was stirred at r.t. in the presence of a cat. amount of TMSOTf (4 mg, 1 mol%) for 15 min (progress of the reaction was monitored by TLC). The reaction mixture was then poured onto crushed ice (10 g) and stirred for 5-10 min. The resulting solid was filtered through a sintered funnel under suction, washed with ice-cold water (10 mL) and then recrystallized from hot EtOH to afford pure product (0.58 g, 95%).
This procedure was followed for the preparation of all the dihydropyrimidinones and thiones listed in Table
[1]
. The mp, spectral and analytical data for selected compounds are presented below.
4d: Mp 152-155 °C. IR (KBr): 3280, 3185, 2928, 1710, 1651, 1613, 1583 cm-1. 1H NMR: δ = 9.98 (br s, N1-H), 9.31 (br s, N3-H), 7.16 (d, J = 9.1 Hz, 2 H), 6.62 (d, J = 9.1 Hz, 2 H), 5.13 (s, 1 H), 3.60 (s, 3 H), 2.92 (s, 6 H), 2.30 (s, 3 H). 13C NMR: δ = 174.1, 166.2, 150.3, 144.9, 131.2, 127.4, 112.6, 101.3, 53.7, 51.3, 17.4. EIMS: m/z (%) = 305(21) [M+], 246 (25), 231 (8), 185 (22), 171 (18), 141 (37), 120 (32), 78 (100), 43 (87). 4g: Mp 163-165 °C. IR (KBr): 3340, 3230, 3106, 2980, 1700, 1651, 1613 cm-1. 1H NMR: δ = 8.90 (br s, N1-H), 7.11 (br s, N3-H), 6.72-6.89 (m, 3 H), 5.23
(s, 1 H), 4.02-4.18 (m, 2 H), 3.85 (s, 6 H), 2.73-2.78 (m, 2 H), 1.15-1.35 (m, 6 H). 13C NMR: δ = 164.4, 152.6, 152.0, 147.6, 147.1, 136.3, 117.5, 110.2, 109.2, 98.4, 58.4, 54.7, 54.6, 53.2, 23.7, 13.0, 11.8. EIMS: m/z (%) = 334 (67) [M+], 305 (100), 261 (45), 260 (22), 197 (37), 169 (7). 4h: mp 193-195 °C. IR (KBr): 3157, 3122, 2980, 1710, 1651, 1596
cm-1. 1H NMR: δ = 8.10 (br s, N1-H), 7.58 (br s, N3-H), 6.80 (s, 3 H), 5.33 (s, 1 H), 3.88 (s, 6 H), 2.38 (s, 3 H), 1.85 (s, 9 H). 13C NMR: δ = 173.9, 164.5, 149.0, 148.9, 141.6, 135.1, 118.9, 111.3, 110.1, 104.2, 81.0, 55.9, 28.0, 17.9. EIMS:
m/z (%) = 364 [M+], 307 (100, -57) [t-Bu], 263 (52), 248 (9), 171 (46), 138 (29), 57 (35). 5a: mp 200-202 °C. IR (KBr): 3220, 3085, 1745, 1690 cm-1. 1H NMR: δ = 9.83 (br s, N1-H), 9.12 (br s, N1-H), 6.62-7.28 (m, 4 H), 4.53 (d, J = 2.1 Hz, 1 H), 4.15 (q, J = 7.0 Hz, 2 H), 3.28 (d, J = 2.1 Hz, 1 H), 1.78 (s, 3 H), 1.22 (t, J = 7.0 Hz, 3 H). 13C NMR: δ = 168.5, 155.2, 150.5, 129.5, 128.6, 125.3, 121.0, 116.5, 83.5, 61.0, 48.0, 44.2, 23.9, 14.3. EIMS: m/z (%) = 276 (62) [M+], 247 (81), 229 (97), 203 (71), 183 (100).