References
-
Passerini three-component and Ugi four-component condensations are the most popular among many other reactions for their wide scope and synthetic utility. For reviews, see:
-
1a
Bienayme H.
Hulme C.
Oddon G.
Schmitt P.
Chem.-Eur. J.
2000,
6:
3321
-
1b
Domling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3168
-
2a
Dolle RE.
Nelson KH.
J. Comb. Chem.
1999,
1:
235
-
2b
Obrecht D.
Villalgordo JM. In Solid-Supported Combinatorial and Parallel Synthesis of Small Molecular Weight Compounds Libraries
Baldwin JE.
Williams RM.
Pergamon Press;
New York:
1998.
-
2c
Gordon EM.
Gallop MA.
Patel DV.
Acc. Chem. Res.
1996,
29:
144
- 3
Biginelli P.
Gazz. Chim. Ital.
1893,
23:
360
-
For a review, see:
-
4a
Kappe CO.
Tetrahedron
1993,
49:
6937 ; and references cited therein
-
4b
Kappe CO.
Acc. Chem. Res.
2000,
33:
879
-
6a
Atwal KS.
Rovnyak GC.
Kimball SD.
Floyd DM.
Moreland S.
Swanson BN.
Gougoutas JZ.
Schwartz J.
Smillie KM.
Malley MF.
J. Med. Chem.
1990,
33:
2629
-
6b Rovnyak G. C., Kimball S. D., Beyer B., Cucinotta G., DiMarco J. D., Gougoutas J. Z., Hedberg A., Malley M. F., McCarthy J. P., Zhang R., Moreland S.; J. Med. Chem.; 1995, 38: 119; and references therein
- 7
Mayer TU.
Kapoor TM.
Haggarty SJ.
King RW.
Schreiber SL.
Mitchison TJ.
Science
1999,
286:
971
-
8a
Atwal KS.
Rovnyak GC.
O’Reilly BC.
Schwartz J.
J. Org. Chem.
1989,
54:
5898
-
8b
Barluenga J.
Tomas M.
Ballesteros A.
Lopez LA.
Tetrahedron Lett.
1989,
30:
4573
- 9
O’Reilly BC.
Atwal KS.
Heterocycles
1987,
26:
1185
-
10a
Wipf P.
Cunningham A.
Tetrahedron Lett.
1995,
36:
7819
-
10b
Studer A.
Jeger P.
Wipf P.
Curran DP.
J. Org. Chem.
1997,
62:
2917
-
10c
Hu EH.
Sidler DR.
Dolling U.-H.
J. Org. Chem.
1998,
63:
3454
-
10d
Kappe CO.
Falsone SF.
Synlett
1998,
718
-
10e
Singh K.
Singh J.
Deb PK.
Singh H.
Tetrahedron
1999,
55:
12873
-
10f
Bigi F.
Carloni S.
Frullanti B.
Maggi R.
Sartori G.
Tetrahedron Lett.
1999,
40:
3465
-
10g
Ranu BC.
Hajra A.
Jana U.
J. Org. Chem.
2000,
65:
6270
-
10h
Lu J.
Ma HR.
Synlett
2000,
63
-
10i
Dondoni A.
Massi A.
Tetrahedron Lett.
2001,
42:
7975
-
10j
Kumar AK.
Kasthuraiah M.
Reddy SC.
Reddy DC.
Tetrahedron Lett.
2001,
42:
7873
-
10k
Fu N.
Yuan Y.
Cao Z.
Wang S.
Wang J.
Peppe C.
Tetrahedron
2002,
58:
4801
- 12
Paquette LA.
Encyclopedia of Reagents for Organic Synthesis
Vol. 7:
John Wiley & Sons;
Chichester:
1995.
p.5315-5317
- 13
Folkers K.
Harwood HJ.
Johnson TB.
J. Am. Chem. Soc.
1932,
54:
3751
- 14
Eynde JJV.
Audiart N.
Canonne N.
Michel S.
Haverbeke YV.
Kappe CO.
Heterocycles
1997,
45:
1967
5 Biginelli stated (ref.
[3]
) that his research was inspired by the earlier work of R. Behrend on the urea-ketoester coupling and U. Schiff on the urea-aldehyde coupling.
11
Typical Procedure for the Synthesis of DHPM’s 4b: A solution of 4-methoxybenzaldehyde (272 mg, 2.0 mmol), urea (120 mg, 2.0 mmol), EtOAc (260 mg, 2.0 mmol) in MeCN (2 mL) was stirred at r.t. in the presence of a cat. amount of TMSOTf (4 mg, 1 mol%) for 15 min (progress of the reaction was monitored by TLC). The reaction mixture was then poured onto crushed ice (10 g) and stirred for 5-10 min. The resulting solid was filtered through a sintered funnel under suction, washed with ice-cold water (10 mL) and then recrystallized from hot EtOH to afford pure product (0.58 g, 95%).
This procedure was followed for the preparation of all the dihydropyrimidinones and thiones listed in Table
[1]
. The mp, spectral and analytical data for selected compounds are presented below.
4d: Mp 152-155 °C. IR (KBr): 3280, 3185, 2928, 1710, 1651, 1613, 1583 cm-1. 1H NMR: δ = 9.98 (br s, N1-H), 9.31 (br s, N3-H), 7.16 (d, J = 9.1 Hz, 2 H), 6.62 (d, J = 9.1 Hz, 2 H), 5.13 (s, 1 H), 3.60 (s, 3 H), 2.92 (s, 6 H), 2.30 (s, 3 H). 13C NMR: δ = 174.1, 166.2, 150.3, 144.9, 131.2, 127.4, 112.6, 101.3, 53.7, 51.3, 17.4. EIMS: m/z (%) = 305(21) [M+], 246 (25), 231 (8), 185 (22), 171 (18), 141 (37), 120 (32), 78 (100), 43 (87). 4g: Mp 163-165 °C. IR (KBr): 3340, 3230, 3106, 2980, 1700, 1651, 1613 cm-1. 1H NMR: δ = 8.90 (br s, N1-H), 7.11 (br s, N3-H), 6.72-6.89 (m, 3 H), 5.23
(s, 1 H), 4.02-4.18 (m, 2 H), 3.85 (s, 6 H), 2.73-2.78 (m, 2 H), 1.15-1.35 (m, 6 H). 13C NMR: δ = 164.4, 152.6, 152.0, 147.6, 147.1, 136.3, 117.5, 110.2, 109.2, 98.4, 58.4, 54.7, 54.6, 53.2, 23.7, 13.0, 11.8. EIMS: m/z (%) = 334 (67) [M+], 305 (100), 261 (45), 260 (22), 197 (37), 169 (7). 4h: mp 193-195 °C. IR (KBr): 3157, 3122, 2980, 1710, 1651, 1596
cm-1. 1H NMR: δ = 8.10 (br s, N1-H), 7.58 (br s, N3-H), 6.80 (s, 3 H), 5.33 (s, 1 H), 3.88 (s, 6 H), 2.38 (s, 3 H), 1.85 (s, 9 H). 13C NMR: δ = 173.9, 164.5, 149.0, 148.9, 141.6, 135.1, 118.9, 111.3, 110.1, 104.2, 81.0, 55.9, 28.0, 17.9. EIMS:
m/z (%) = 364 [M+], 307 (100, -57) [t-Bu], 263 (52), 248 (9), 171 (46), 138 (29), 57 (35). 5a: mp 200-202 °C. IR (KBr): 3220, 3085, 1745, 1690 cm-1. 1H NMR: δ = 9.83 (br s, N1-H), 9.12 (br s, N1-H), 6.62-7.28 (m, 4 H), 4.53 (d, J = 2.1 Hz, 1 H), 4.15 (q, J = 7.0 Hz, 2 H), 3.28 (d, J = 2.1 Hz, 1 H), 1.78 (s, 3 H), 1.22 (t, J = 7.0 Hz, 3 H). 13C NMR: δ = 168.5, 155.2, 150.5, 129.5, 128.6, 125.3, 121.0, 116.5, 83.5, 61.0, 48.0, 44.2, 23.9, 14.3. EIMS: m/z (%) = 276 (62) [M+], 247 (81), 229 (97), 203 (71), 183 (100).