Subscribe to RSS
DOI: 10.1055/s-2004-817751
Phase Transfer Catalysed Asymmetric Epoxidation of Chalcones Using Chiral Crown Ethers Derived from d-Glucose and d-Mannose
Publication History
Publication Date:
10 February 2004 (online)
![](https://www.thieme-connect.de/media/synlett/200404/lookinside/thumbnails/10.1055-s-2004-817751-1.jpg)
Abstract
New chiral monoaza-15-crown-5 lariat ethers synthesized from d-mannose and the glucose-based crown ethers of similar type generated significant asymmetric induction as phase transfer catalysts in the epoxidation of chalcones with tert-butyl-hydroperoxide (80-92% ee).
Key words
chiral crown ethers - asymmetric phase transfer catalysis - lariate ether - asymmetric epoxidation
-
1a
O’Donnell MI. In Catalytic Asymmetric Synthesis, Asymmetric Phase-Transfer Reactions 2nd ed.:Ojima I. Wiley; New York: 2000. p.727 -
1b
Comprehensive Asymmetric Catalysis
Jacobsen EN.Pfaltz A.Yamamoto H. Springer; New York: 1999. p.241 -
2a
Stoddart JF. Top. Stereochem. 1987, 17: 207 -
2b
Miethchen R.Fehring V. Synthesis 1998, 94 ; and references cited therein - 3
Bakó P.Czinege E.Bakó T.Czugler M.Tőke L. Tetrahedron: Asymmetry 1999, 10: 4539 ; and references cited therein -
4a
Novák T.Tatai J.Bakó P.Czugler M.Keglevich Gy.Tő L. Synlett 2001, 424ke -
4b
Bakó T.Bakó P.Szöllősy Á.Czugler M.Keglevich Gy.Tőke L. Tetrahedron: Asymmetry 2002, 13: 203 - For recent review, see:
-
5a
Porter MJ.Roberts SM.Skidmore J. Bioorg. Med. Chem. 1999, 7: 2145 -
5b
Banfi S.Colonna S.Molinari H.Juliá S.Guixer J. Tetrahedron 1984, 40: 5207 -
5c
Lygo B.Wainwright PG. Tetrahedron 1999, 55: 6289 -
5d
Corey EJ.Zhang F.-Y. Org. Lett. 1999, 1: 1287 -
5e
Arai S.Tsuge H.Shioiri T. Tetrahedron Lett. 1998, 39: 7563 -
5f
Enders D.Zhu J.Raabe G. Angew. Chem., Int. Ed. Engl. 1996, 35: 1725 -
5g
Enders D.Kramps L.Zhu J. Tetrahedron: Asymmetry 1998, 9: 3959 -
5h
Yamada K.Arai T.Sasai H.Shibasaki M. J. Org. Chem. 1998, 63: 3666 -
5i
Watanabe S.Arai T.Sasai H.Bougauchi M.Shibasaki M. J. Org. Chem. 1998, 63: 8090 - 6
Bakó P.Tőke L. J. Incl. Phenom. 1995, 23: 195 - 7
Di Cesare P.Gross B. Synth. Commun. 1979, 4581 - 8
Marsman B.Wynberg H. J. Org. Chem. 1979, 44: 2312 - 9
Washington I.Houk KN. Org. Lett. 2002, 4: 2661 - 10
Juliá S.Guixer J.Masana J.Rocas J.Colonna S.Annuziata R. J. Chem. Soc., Perkin Trans. 1 1982, 1317
References
Selected data for 5: [α]D
20 +18.0 (c = 1, CHCl3). 1H NMR:
δ = 7.47 (d, 2 H, ArH), 7.36 (t, 3 H, ArH), 5.59 (s, 1 H, benzylidene-CH), 4.78 (s, 1 H, anomer-H), 4.24 (q, J = 10.1 Hz, 1 H, H-6), 4.06 (t, J = 9.6 Hz, 1 H, H-6), 3.66-4.00 (m, 16 H, OCH2, H-2, H-3, H-4, H-5), 3.38 (s, 3 H, OCH3), 3.26 (t, 2 H, CH2I), 3.18 (t, 2 H, CH2I). For 2a: [α]D
20 +16.0 (c = 1, CHCl3). 1H NMR: δ = 7.48 (d, 2 H, ArH), 7.35 (t, 3 H, ArH), 5.30 (s, 1 H, benzylidene-CH), 4.75 (s, 1 H, anomer-H), 4.24 (q, J = 10.1 Hz, 1 H, H-6), 4.11 (t, J = 9.6 Hz, 1 H, H-6), 3.55-3.98 (m, 18 H, OCH2, H-2, H-3, H-4, H-5), 3.37 (s, 3 H, OCH3), 2.78 (t, 6 H, CH2N). FAB-MS: 484 [M+ + H], 506 [M+ + Na]. For 2b: [α]D
20 +15.0 (c = 1, CHCl3). FAB-MS: 498 [M+ + H], 520 [M+ + Na]. For 2c: [α]D
20 +19.6 (c = 1, CHCl3). 1H NMR: δ = 7.39 (d, 2 H, ArH), 7.27 (t, 3 H, ArH), 5.52 (s, 1 H, benzylidene-CH), 4.67 (s, 1 H, anomer-H), 4.16 (q, J = 10.1 Hz, 1 H, H-6), 4.02 (t, J = 9.6 Hz, 1 H, H-6), 3.45-3.95 (m, 18 H, OCH2, H-2, H-3, H-4, H-5), 3.31 (s, 3 H, OCH3), 3.24 (t, 3 H, OCH3), 2.72 (t, 4 H, CH2N), 2.56 (t, 2 H, CH2N), 1.69 (m, 2 H, CH2). FAB-MS: 512 [M+ + H], 534 [M+ + Na]. For 2d: [α]D
20 +18.8 (c = 1, CHCl3). 1H NMR: δ = 7.71 (d, 2 H, tosyl-ArH), 7.49 (d, 2 H, tosyl-ArH), 7.38 (d, 2 H, ArH), 7.32 (t, 3 H, ArH), 5.62 (s, 1 H, benzylidene-CH), 4.74 (s, 1 H, anomer-H), 4.26 (q, J = 10.1 Hz, 1 H, H-6), 4.12 (t, J = 9.6 Hz, 1 H, H-6), 3.51-4.00 (m, 16 H, OCH2, H-2, H-3, H-4, H-5), 3.40 (s, 3 H, OCH3), 3.20-3.26 (m, 4 H, CH2N), 2.44 (s, 3 H, CH3). FAB-MS: 594 [M+ + H], 616 [M+ + Na]. For 2e: [α]D
20 +26.3 (c = 1, CHCl3). 1H NMR: δ = 7.47 (d, 2 H, ArH), 7.35 (t, 3 H, ArH), 5.60 (s, 1 H, benzylidene-CH), 4.78 (s, 1 H, anomer-H), 4.25 (q, J = 10.1 Hz, 1 H, H-6), 4.14 (t, J = 9.6 Hz, 1 H, H-6), 3.55-4.08 (m, 16 H, OCH2, H-2, H-3, H-4, H-5), 3.39 (s, 3 H, OCH3), 2.85 (t, 2 H, CH2N), 2.76 (t, 2 H, CH2N), 2.55 (m, 1 H, NH). FAB-MS: 440 [M+ + H], 462 [M+ + Na].
General Procedure for the Epoxidation of Chalcones: Chalcone (1.44 mmol) and the crown ether (0.1 mmol) were dissolved in 3 mL of toluene and 1 mL of 20% aq NaOH was added maintaining the temperature at 5 °C with ice water. Then 0.5 mL of tert-butylhydroperoxide (5.5 M decane solution, 2.88 mmol) was added and the mixture stirred at 5 °C. After completing the reaction (1-48 h), a mixture of 7 mL of toluene and 10 mL of water was added. The organic phase was dried (Na2SO4) and concentrated in vacuo. The crude product was purified on silica gel by preparative TLC with hexane-EtOAc (10:1) as eluent, for 7a [α]D = -196 (c = 1, CH2Cl2, 20 °C) with 92% ee (lit., [α]D -214 for the pure enantiomer); [10] mp 64-66 °C (EtOH). 1H NMR (CDCl3): δ = 8.02 (d, 2 H, o-COPh-H), 7.63 (t, 1 H, p-COPh-H), 7.50 (t, 2 H, m-COPh-H), 7.38-7.44 (m, 5 H, CHPh-H), 4.30 (d, J = 1.9 Hz, 1 H, COCH), 4.09 (d, J = 1.9 Hz, 1 H, PhCH). For 7c: [α]D = -167.9 (c = 1, CH2Cl2, 20 °C) with 82% ee; mp 81 °C (EtOH). 1H NMR: δ = 8.01 (d, 2 H, o-COPh-H), 7.39 (m, 5 H, CHPh-H), 6.95 (d, 2 H, m-COPh-H), 4.25 (d, J = 1.7 Hz, 1 H, COCH), 4.07 (d, J = 1.3 Hz, 1 H, PhCH), 3.87 (s, 3 H, OCH3). For 7d: [α]D = -156.1 (c = 1, CH2Cl2, 20 °C) with 80% ee; mp 121 °C (EtOH). 1H NMR: δ = 7.96 (d, 2 H, o-COPh-H), 7.46 (d, 2 H, m-COPh-H), 7.40 (t, 3 H, m,p-CHPh-H), 7.36 (d, 2 H, o-CHPh-H), 4.23 (d, J = 1.6 Hz, 1 H, COCH), 4.07 (d, J = 1.3 Hz, 1 H, PhCH).