Plant Biol (Stuttg) 2004; 6(3): 280-288
DOI: 10.1055/s-2004-817911
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Engineering Plants for Elevated CO2: A Relationship between Starch Degradation and Sugar Sensing

T. D. Sharkey1 , M. Laporte2 , Y. Lu1 , S. Weise1 , A. P. M. Weber3
  • 1Department of Botany, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI 53706, USA
  • 2Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
  • 3Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
Further Information

Publication History

Publication Date:
14 May 2004 (online)

Abstract

In the future, plants will have additional CO2 for photosynthesis. However, plants do not take maximal advantage of this additional CO2 and it has been hypothesized that end product synthesis limitations and sugar sensing mechanisms are important in regulating plant responses to increasing CO2. Attempts to increase end product synthesis capacity by engineering increased sucrose-phosphate synthase activity have been generally, but not universally, successful. It was found that plants benefited from a two- to three-fold increase in SPS activity but a 10-fold increase did not increase yield. Despite the success in increasing yield, increasing SPS did not increase photosynthesis. However, carbon export from chloroplasts was increased during the day and reduced at night (when starch provides carbon for sucrose synthesis. We develop here a hypothesis that starch degradation is closely sensed by hexokinase because a newly discovered pathway required for starch to sucrose conversion that involves maltose is one of few metabolic pathways that requires hexokinase activity.

References

  • 1 Arenas-Huertero F., Arroyo A., Zhou L., Sheen J., León P.. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar.  Genes Dev.. (2000);  14 2085-2096
  • 2 Beck E.. The degradation of transitory starch granules in chloroplasts. Heath, R. L. and Preiss, J., eds. Regulation of Carbon Partitioning in Photosynthetic Tissue. Rockville, MD; American Society of Plant Physiologists (1985): 27-44
  • 3 Boos W., Shuman H.. Maltose/maltodextrin system of Escherichia coli: Transport, metabolism, and regulation.  Microbiology and Molecular Biology Reviews. (1998);  62 204-229
  • 4 Bouma T. J., De Visser R., Van Leeuwen P. J., De Kock M. J., Lambers H.. The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature source leaves and their contribution to dark respiration.  J. Exp. Bot.. (1995);  46 1185-1194
  • 5 Bruneau J.-M., Worrell A. C., Cambou B., Lando D., Voelker T. A.. Sucrose phosphate synthase, a key enzyme for sucrose biosynthesis in plants. Protein purification from corn leaves and immunological detection.  Plant Physiol.. (1991);  96 473-478
  • 6 Caspar T., Huber S. C., Somerville C.. Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity.  Plant Physiol.. (1985);  79 11-17
  • 7 Caspar T., Lin T.-P., Kakefuda G., Benbow L., Preiss J., Somerville C.. Mutants of Arabidopsis with altered regulation of starch degradation.  Plant Physiol.. (1991);  95 1181-1188
  • 8 Cheng S. H., Moore B. D., Seemann J. R.. Effects of short- and long-term elevated CO2 on the expression of ribulose-1,5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh.  Plant Physiol.. (1998);  116 715-723
  • 9 Chia T., Thorneycraft D., Chapple A., Messerli G., Chen J., Zeeman S., Smith S. M., Smith A. M.. A cytosolic glycosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night.  Plant Journal. (2004);  37 853-863
  • 10 Critchley J. H., Zeeman S. C., Takaha T., Smith A. M., Smith S. M.. A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. .  Plant J.. (2001);  26 89-100
  • 11 Farquhar G. D., Sharkey T. D.. Photosynthesis and carbon assimilation. Boote, K. J., Bennett, J. M., Sinclair, T. R., and Paulsen, G. M., eds. Physiology and Determination of Crop Yield. Madison; ASA, CSSA, SSSA (1994): 187-210
  • 12 Foyer C. H.. The basis for source-sink interaction in leaves.  Plant Physiol. Biochem.. (1987);  25 649-657
  • 13 Galtier N., Foyer C. H., Huber J., Voelker T. A., Huber S. C.. Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato (Lycopersicon esculentum var UC82B).  Plant Physiol.. (1993);  101 535-543
  • 14 Galtier N., Foyer C. H., Murchie E., Alred R., Quick P., Voelker T. A., Thépenier C., Lascève G., Betsche T.. Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L.) plants over-expressing sucrose phosphate synthase.  J. Exp. Bot.. (1995);  46 1335-1344
  • 15 Geigenberger P., Stitt M.. Diurnal changes in sucrose, nucleotides, starch synthesis and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase.  Plant Journal. (2000);  23 795-806
  • 16 Gerhardt R., Stitt M., Heldt H. W.. Subcellular metabolite levels in spinach leaves. Regulation of sucrose synthesis during diurnal alterations in photosynthetic partitioning.  Plant Physiol.. (1987);  83 399-407
  • 17 Halford N. G., Hardie D. G.. SNF1-related protein kinases: global regulators of carbon metabolism in plants?.  Plant Molecular Biology. (1998);  37 735-748
  • 18 Halford N. G., Hey S., Jhurreea D., Laurie S., McKibbin R. S., Zhang Y., Paul M. J.. Dissection and manipulation of metabolic signalling pathways.  Ann. Appl. Biol.. (2003);  142 25-31
  • 19 Harley P. C., Thomas R. B., Reynolds J. F., Strain B. R.. Modelling photosynthesis of cotton grown in elevated CO2.  Plant Cell Environ.. (1992);  15 271-282
  • 20 Häusler R. E., Schlieben N. H., Flügge U. I.. Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum). II. Assessment of control coefficients of the triose phosphate/phosphate translocator.  Planta. (2000 a);  210 383-390
  • 21 Häusler R. E., Schlieben N. H., Nicolay P., Fischer K., Fischer K. L., Flügge U. I.. Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.). I. Comparative physiological analysis of tobacco plants with antisense repression and overexpression of the triose phosphate/phosphate translocator.  Planta. (2000 b);  210 371-382
  • 22 Häusler R. E., Schlieben N. H., Schulz B., Flügge U. I.. Compensation of decreased triose phosphate/phosphate translocator activity by accelerated starch turnover and glucose transport in transgenic tobacco.  Planta. (1998);  204 366-376
  • 23 Heineke D., Kruse A., Flügge U.-I., Frommer W. B., Riesmeier J. W., Willmitzer L., Heldt H. W.. Effect of antisense repression of the chloroplast triose- phosphate translocator on photosynthetic metabolism in transgenic potato plants.  Planta. (1994);  193 174-180
  • 24 Heineke D., Sonnewald U., Büssis D., Günter G., Leidreiter K., Wilke I., Raschke K., Willmitzer L., Heldt H. W.. Apoplastic expression of yeast-derived invertase in potato. Effects on photosynthesis, leaf solute composition, water relations, and tuber composition.  Plant Physiol.. (1992);  100 301-308
  • 25 Heldt H. W., Chon C. J., Maronde D., Herold A., Stankovic Z. S., Walker D. A., Kraminer A., Kirk M. R., Heber U.. Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts.  Plant Physiol.. (1977);  59 1146-1155
  • 26 Herbers K., Meuwly P., Frommer W. B., Metraux J. P., Sonnewald U.. Systemic Acquired Resistance Mediated by the Ectopic Expression of Invertase: Possible Hexose Sensing in the Secretory Pathway.  The Plant Cell. (1996);  8 793-803
  • 27 Herbers K., Tacke E., Hazirezaei M., Krause K. P., Melzer M., Rohde W., Sonnewald U.. Expression of a luteoviral movement protein in transgenic plants leads to carbohydrate accumulation and reduced photosynthetic capacity in source leaves.  Plant Journal. (1997);  12 1045-1056
  • 28 Herold A., Leegood R. C., McNeil P. H., Robinson S. P.. Accumulation of maltose during photosynthesis in protoplasts isolated from spinach leaves treated with mannose.  Plant Physiol.. (1981);  67 85-88
  • 29 Hoffmann-Benning S., Willmitzer L., Fisahn J.. Analysis of growth, composition and thickness of the cell walls of transgenic tobacco plants expressing a yeast-derived invertase.  Protoplasma. (1997);  200 146-153
  • 30 IPCC .Climate change 2001: Impacts, adaptation and vulnerability. Summary for policy makers, 2001. Geneva; Intergovernmental Panel on Climate Change (2001): 1-50
  • 31 Kakefuda G., Duke S. H.. Characterization of pea chloroplast D-enzyme (4-α-D-glucanotransferase).  Plant Physiol.. (1989);  91 136-143
  • 32 Kammerer B., Fischer K., Hilpert B., Schubert S., Gutensohn M., Weber A., Flügge U. I.. Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: The glucose 6-phosphate/phosphate antiporter.  Plant Cell. (1998);  10 105-117
  • 33 Klein D., Morcuende R., Stitt M., Krapp A.. Regulation of nitrate reductase expression in leaves by nitrate and nitrogen metabolism is completely overridden when sugars fall below a critical level.  Plant Cell Environ.. (2000);  23 863-871
  • 34 Koch K. E., Ying Z., Wu Y., Avigne W. T.. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism.  J. Exp. Bot.. (2000);  51 417-427
  • 35 Krapp A., Hofmann B., Schäfer C., Stitt M.. Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: A mechanism for the “sink regulation” of photosynthesis.  Plant Journal. (1993);  3 817-828
  • 36 Krapp A., Quick W. P., Stitt M.. Ribulose-1,5-bisphosphate carboxylase-oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream.  Planta. (1991);  186 58-69
  • 37 Krapp A., Stitt M.. Influence of high carbohydrate content on the activity of plastidic and cytosolic isoenzyme pairs in photosynthetic tissues.  Plant Cell Environ.. (1994);  17 861-866
  • 38 Kruger N. J., AP Rees T.. Maltose metabolism by pea chloroplasts.  Planta. (1983);  158 179-184
  • 39 Lao N. T., Schoneveld O., Mould R. M., Hibberd J. M., Gray J. C., Kavanaugh T. A.. An Arabidopsis gene encoding a chloroplast-targeted β-amylase.  Plant J.. (1999);  20 519-527
  • 40 Laporte M. M., Galagan J. A., Prasch A. L., Vanderveer P. J., Hanson D. T., Shewmaker C. K., Sharkey T. D.. Promoter strength and tissue specificity effects on growth of tomato plants transformed with maize sucrose-phosphate synthase.  Planta. (2001);  212 817-822
  • 41 Laporte M. M., Galagan J. A., Shapiro J. A., Boersig M. R., Shewmaker C. K., Sharkey T. D.. Sucrose-phosphate synthase activity and yield analysis of tomato plants transformed with maize sucrose-phosphate synthase.  Planta. (1997);  203 253-259
  • 42 León P., Sheen J.. Sugar and hormone connections.  Trends Plant Sci.. (2003);  8 110-116
  • 43 Levi C., Gibbs M.. Starch degradation in isolated chloroplasts.  Plant Physiol.. (1976);  57 933-935
  • 44 Levi C., Preiss J.. Amylopectin degradation in Pea chloroplast extracts.  Plant Physiol.. (1978);  61 218-220
  • 45 Lorberth R., Ritte G., Willmitzer L., Kossmann J.. Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening.  Nat. Biotechnol.. (1998);  16 473-477
  • 46 Lu Y., Sharkey T. D.. The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells.  Planta. (2004);  218 466-473
  • 47 Micallef B. J., Haskins K. A., Vanderveer P. J., Roh K.-S., Shewmaker C. K., Sharkey T. D.. Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis.  Planta. (1995);  196 327-334
  • 48 Moore B., Zhou L., Rolland F., Hall Q., Cheng W. H., Liu Y. X., Hwang I., Jones T., Sheen J.. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling.  Science. (2003);  300 332-336
  • 49 Moore B. D., Cheng S. H., Rice J., Seemann J. R.. Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2.  Plant Cell Environ.. (1998);  21 905-915
  • 50 Moore B. D., Cheng S. H., Sims D., Seemann J. R.. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2.  Plant Cell Environ.. (1999);  22 567-582
  • 51 Moore B. D., Sheen J.. Plant sugar sensing and signaling - a complex reality.  Trends Plant Sci.. (1999);  4 250
  • 52 Neuhaus H. E., Schulte N.. Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L.  Biochemistry Journal. (1996);  318 945-953
  • 53 Nielsen T. H., Krapp A., Röper-Schwarz U., Stitt M.. The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen.  Plant Cell Environ.. (1998);  21 443-454
  • 54 Nittylä T., Messerli G., Trevisan M., Chen J., Smith A. M., Zeeman S. C.. A novel maltose transporter is essential for starch degradation in leaves.  Science. (2004);  303 87-89
  • 55 Ozcan S., Dover J., Johnston M.. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae.  EMBO J.. (1998);  17 2566-2573
  • 56 Palmer T. N., Ryman B. E., Whelan W. J.. The action pattern of amylomaltase from Escherichia coli. .  Eur. J. Biochem.. (1976);  69 105-115
  • 57 Paul M. J., Foyer C. H.. Sink regulation of photosynthesis.  J. Exp. Bot.. (2001);  52 1383
  • 58 Peavey D. G., Steup M., Gibbs M.. Characterization of starch breakdown in the intact spinach chloroplast.  Plant Physiol.. (1977);  60 305-308
  • 59 Riesmeier J. W., Flügge U.-I., Schulz B., Heineke D., Heldt H.-W., Willmitzer L., Frommer W. B.. Antisense repression of the chloroplast triose phosphate translocator affects carbon partitioning in transgenic potato plants.  Proc. Natl. Acad. Sci. USA. (1993);  90 6160-6164
  • 60 Ritte G., Lorberth R., Steup M.. Reversible binding of the starch-related R1 protein to the surface of transitory starch granules.  Plant J.. (2000);  21 387-391
  • 61 Ritte G., Raschke K.. Metabolite export of isolated guard cell chloroplasts of Vicia faba. .  New Phytol.. (2003);  159 195-202
  • 62 Rolland F., Moore B., Sheen J.. Sugar sensing and signaling in plants.  The Plant Cell. (2002);  14 S185-S205
  • 63 Rost S., Frank C., Beck E.. The chloroplast envelope is permeable for maltose but not for maltodextrins.  Biochim. Biophys. Acta. (1996);  1291 221-227
  • 64 Sage R. F., Sharkey T. D.. The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field grown plants.  Plant Physiol.. (1987);  84 658-664
  • 65 Schäfer G., Heber U., Heldt H. W.. Glucose transport into spinach chloroplasts.  Plant Physiol.. (1977);  60 286-289
  • 66 Scheidig A., Fröhlich A., Schulze S., Lloyd J. R., Kossmann J.. Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves.  Plant Journal. (2002);  30 581-591
  • 67 Schleucher J., Vanderveer P. J., Sharkey T. D.. Export of carbon from chloroplasts at night.  Plant Physiol.. (1998);  118 1439-1445
  • 68 Schneider A., Häusler R. E., Kolukisaoglu Ü., Kunze R., van der Graaf E., Schwacke R., Catoni E., Desimone M., Flügge U.-I.. An Arabidopsis thaliana knockout mutant of the chloroplast triosephosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished.  Plant J.. (2002);  32 1-15
  • 69 Servaites J. C., Fondy B. R., Li B., Geiger D. R.. Sources of carbon for export from spinach leaves throughout the day.  Plant Physiol.. (1989 a);  90 1168-1174
  • 70 Servaites J. C., Geiger D. R.. Kinetic characteristics of chloroplast glucose transport.  J. Exp. Bot.. (2002);  53 1581-1591
  • 71 Servaites J. C., Geiger D. R., Tucci M. A., Fondy B. R.. Leaf carbon metabolism and metabolite levels during a period of sinusoidal light.  Plant Physiol.. (1989 b);  89 403-408
  • 72 Sharkey T. D.. O2-insensitive photosynthesis in C3 plants. Its occurrence and a possible explanation.  Plant Physiol.. (1985 a);  78 71-75
  • 73 Sharkey T. D.. Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations.  Bot. Rev.. (1985 b);  51 53-105
  • 74 Sharkey T. D., Savitch L. V., Vanderveer P. J., Micallef B. J.. Carbon partitioning in a Flaveria linearis mutant with reduced cytosolic fructose bisphosphatase.  Plant Physiol.. (1992);  100 210-215
  • 76 Sherson S. M., Alford H. L., Forbes S. M., Wallace G., Smith S. M.. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. .  J. Exp. Bot.. (2003);  54 525-531
  • 77 Signora L., Galtier N., Skot L., Lucas H., Foyer C. H.. Over-expression of sucrose phosphate synthase in Arabidopsis thaliana results in increased foliar sucrose/starch ratios and favours decreased foliar carbohydrate accumulation in plants after prolonged growth with CO2 enrichment.  J. Exp. Bot.. (1998);  49 669-680
  • 78 Sims D. A., Luo Y., Seemann J. R.. Importance of leaf versus whole plant CO2 environment for photosynthetic acclimation.  Plant Cell Environ.. (1998);  21 1189-1196
  • 79 Stitt M., ApRees T.. Carbohydrate breakdown by chloroplasts of Pisum sativum. .  Biochim. Biophys. Acta. (1980);  627 131-143
  • 80 Stitt M.. Fructose-2,6-bisphosphate as a regulatory molecule in plants. Annu. Rev. Plant Physiol.  Plant Mol. Biol.. (1990);  41 153-185
  • 81 Stitt M., Heldt H. W.. Physiological rates of starch breakdown in isolated intact spinach chloroplasts.  Plant Physiol.. (1981);  68 755-761
  • 82 Stitt M., Von Schaewen A., Willmitzer L.. “Sink” regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin-cycle enzymes and an increase of glycolytic enzymes.  Planta. (1990);  183 40-50
  • 83 Takaha T., Smith S. M.. The functions of 4-α-glucanotransferases and their use for the production of cyclic glucans. Harding, S. E., ed. Biotechnology and Genetic Engineering Reviews. Hampshire; Intercept Ltd. (1999): 257-280
  • 84 Veramendi J., Fernie A. R., Leisse A., Willmitzer L., Trethewey R. N.. Potato hexokinase 2 complements transgenic Arabidopsis plants deficient in hexokinase 1 but does not play a key role in tuber carbohydrate metabolism.  Plant Molecular Biology. (2002);  49 491-501
  • 85 Von Schaewen A., Stitt M., Schmidt R., Sonnewald U., Willmitzer L.. Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants.  EMBO Journal. (1990);  9 3033-3044
  • 86 Weise S. E., Weber A., Sharkey T. D.. Maltose is the major form of carbon exported from the chloroplast at night.  Planta. (2003);  218 474-482
  • 87 Wiese A., Gröner F., Sonnewald U., Deppner H., Lerchl J., Hebbeker U., Flügge U. I., Weber A.. Spinach hexokinase I is located in the outer envelope membrane of plastids.  FEBS Lett.. (1999);  461 13-18
  • 88 Worrell A. C., Bruneau J.-M., Summerfelt K., Boersig M., Voelker T. A.. Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning.  Plant Cell. (1991);  3 1121-1130
  • 89 Xiao W. Y., Sheen J., Jang J. C.. The role of hexokinase in plant sugar signal transduction and growth and development.  Plant Molecular Biology. (2000);  44 451-461
  • 75 Yanagisawa S., Yoo S.-D., Sheen J.. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants.  Nature. (2003);  425 521-525
  • 90 Zeeman S. C., AP Rees T.. Changes in carbohydrate metabolism and assimilate export in starch-excess mutants of Arabidopsis. .  Plant Cell Environ.. (1999);  22 1445-1453
  • 91 Zeeman S. C., Northrop F., Smith A. M., AP Rees T.. A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolyzing enzyme.  Plant J. (1998);  15 357-385
  • 92 Zrenner R., Krause K. P., Apel P., Sonnewald U.. Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield.  Plant Journal. (1996);  9 671-681

T. D. Sharkey

Department of Botany
University of Wisconsin-Madison

430 Lincoln Dr.

Madison, WI 53706

USA

Email: tsharkey@wisc.edu

Guest Editor: F. Loreto