Subscribe to RSS
DOI: 10.1055/s-2004-822916
Novel Diels-Alder and Thermal [4+4] Cycloadditions of Corroles
Publication History
Publication Date:
28 April 2004 (online)
Abstract
Corroles participate in Diels-Alder and in thermal [4+4] cycloaddition reactions with pentacene to yield novel barrelene-fused corroles.
Key words
corroles - Diels-Alder reaction - thermal [4+4] cycloaddition
- 1
Paolesse R. In Syntheses of Corroles, The Porphyrin Handbook Vol 2:Kadish KM.Smith KM.Guilard R. Academic Press; San Diego: 2000. Chap. 11. p.201-232 - 2
Gross Z.Simkhovich L.Galili N. Chem. Commun. 1999, 599 - 3
Simkhovich L.Mahammed A.Goldberg I.Gross Z. Chem.-Eur. J. 2001, 7: 1041 - 4
Simkhovich L.Gross Z. Tetrahedron Lett. 2001, 42: 8089 - 5
Aviezer D.Cotton S.David M.Segev A.Khaselev N.Galili N.Gross Z.Yayon A. Cancer Res. 2000, 60: 2973 - 6 For a recent review on the recent synthetic methodologies leading to corroles and core-modified corroles see:
Gryko DT. Eur. J. Org. Chem. 2002, 1735 - 7
Gross Z.Galili N.Saltsman I. Angew. Chem. Int. Ed. 1999, 38: 1427 - 8
Paolesse R.Nardis S.Sagone F.Khoury RG. J. Org. Chem. 2001, 66: 550 - 9
Collman JP.Decréau RA. Tetrahedron Lett. 2003, 44: 1207 - 10
Neya S.Ohyama K.Funasaki N. Tetrahedron Lett. 1997, 38: 4113 - 11
Licoccia S.Vona MLD.Paolesse R. J. Org. Chem. 1998, 63: 3190 - 12
Ka J.-W.Cho W.-S.Lee C.-H. Tetrahedron Lett. 2000, 41: 8121 - 13
Asokan CV.Smeets S.Dehaen W. Tetrahedron Lett. 2001, 42: 4483 - 14
Brinas RP.Bruckner C. Synlett 2001, 442 - 15
Broring M.Hell C. Chem. Commun. 2001, 2336 - 16
Gryko DT.Piechota KE. J. Porphyrins Phthalocyanines 2002, 6: 81 - 17
Decréau RA.Collman JP. Tetrahedron Lett. 2003, 44: 3323 - 18
Paolesse R.Jaquinod L.Senge MO.Smith KM. J. Org. Chem. 1997, 62: 6193 - 19
Mahammed A.Giladi I.Goldberg I.Gross Z. Chem.-Eur. J. 2001, 7: 4259 - 20
Mahammed A.Goldberg I.Gross Z. Org. Lett. 2001, 3: 3443 - 21
Andrioletti B.Rose E. Chem. Commun. 2002, 715 - 22
Saltsman I.Mahammed A.Goldberg I.Tkachenko E.Botoshansky M.Gross Z. J. Am. Chem. Soc. 2002, 124: 7411 - 23
Saltsman I.Goldberg I.Gross Z. Tetrahedron Lett. 2003, 44: 5669 - 24
Tomé AC.Lacerda PSS.Neves MGPMS.Cavaleiro JAS. Chem. Commun. 1997, 1199 - 25
Silva AMG.Tomé AC.Neves MGPMS.Cavaleiro JAS. Tetrahedron Lett. 2000, 41: 3065 - 26
Silva AMG.Tomé AC.Neves MGPMS.Silva AMS.Cavaleiro JAS. Chem. Commun. 1999, 1767 - 27
Silva AMG.Tomé AC.Neves MGPMS.Silva AMS.Cavaleiro JAS.Perrone D.Dondoni A. Tetrahedron Lett. 2002, 43: 603 - 28
Silva AMG.Tomé AC.Neves MGPMS.Cavaleiro JAS. Synlett 2002, 1155 - 34
Toda M.Okada K.Oda M. Tetrahedron Lett. 1988, 29: 2329 - 35
Chou T.-S.Chang R.-C. J. Org. Chem. 1993, 58: 493 - 36
Chou T.-S.Chen H.-C.Tsai C.-Y. J. Org. Chem. 1994, 59: 2241 - 37
Leung M.-K.Trahanovsky WS. J. Am. Chem. Soc. 1995, 117: 841
References
Corrole 1 was prepared by following the procedure described in ref. 8.
30Spectroscopic data for 2: 1H NMR (300 MHz, CDCl3): δ = 9.40 (d, 1 H, J = 4.1 Hz, H-18), 8.69 (d, 1 H, J = 4.1 Hz, H-17), 8.75 and 8.53 (2 d, 2 H, J = 4.7 Hz, H-7,8 or H-12,13), 8.60 and 8.41 (2 d, 2 H, J = 4.4 Hz, H-7,8 or H-12,13), 8.08 (s, 2 H, H-2′,14′), 7.70 (s, 2 H, H-7′,9′), 7.68-7.65 and 7.31-7.28 (2 m, 8 H, H-6′,10′,3′,13′ and H-5′,11′,4′,12′), 7.06 (s, 1 H, H-1′), 5.69 (s, 1 H, H-8′). 13C NMR (75 MHz, CDCl3, based on the HSQC and HMBC spectra): δ = 129.5 (C-β), 127.9 (C-β), 127.5 (C-6′,10′,3′,13′), 126.1 (C-5′,11′,4′,12′), 125.8 (C-β), 125.2 (C-β), 123.1 (C-17), 122.8 (C-2′,14′), 122.4 (C-7′,9′), 117.0 (C-18). HRMS-FAB [M]+: m/z = 1072.1698 (calcd for C59H23N4F15: 1072.1683). UV/Vis (CH2Cl2): λmax (log ε) = 411 (5.82), 567 (5.07), 609 nm (4.88).
31Spectroscopic data for 3: 1H NMR (300 MHz, CDCl3): δ = 8.66 and 8.43 (2 d, 4 H, J = 4.7 Hz, H-7,13 and H-8,12), 8.39 (s, 4 H, H-2′,14′,7′′,9′′), 7.81 (s, 4 H, H-7′,9′,2′′,14′′), 7.82-7.80 (m, 4 H, H-6′,10′,3′′,13′′), 7.79-7.76 (m, 4 H, H-13′,3′,6′′,10′′), 7.56 (s, 2 H, H-1′,8′′), 7.47-7.39 (m, 8 H, H-4′,12′,5′′,11′′ and H-5′,11′,4′′,12′′), 5.78 (s, 2 H, H-8′,1′′). 13C NMR (75 MHz, CDCl3): δ = 141.7 and 141.6 (C-1′a,7′a,8′a,14′a,1′′a,7′′a,8′′a,14′′a), 138.0 (C-2,3,17,18), 131.9 and 131.8 (C-2′a,6′a,9′a,13′a,2′′a,6′′a,9′′a,13′′a), 128.0 (C-7,13 or C-8,12), 127.7 and 127.5 (C-6′,10′,3′′,13′′), 126.9 (C-7,13 or C-8,12), 126.35 and 126.29 (C-4′,12′,5′′,11′′ and C-5′,11′,4′′,12′′), 122.7 (C-2′,14′,7′′,9′′), 122.6 (C-7′,9′,2′′,14′′), 50.4 (C-1′,8′′), 49.5 (C-8′,1′′). HRMS (ES) [M + H]+: m/z = 1349.2747 (calcd for C81H36N4F15: 1349.2695). UV/Vis (CH2Cl2): λmax (log ε) = 415 (5.14), 573 (4.44), 612 nm (4.23).
32Spectroscopic data for 5: 1H NMR (300 MHz, CDCl3): δ = 8.64 (d, 2 H, J = 4.5 Hz, H-7,13 or H-8,12), 8.61 (s, 2 H, H-3,17), 8.47 (d, 2 H, J = 4.5 Hz, H-7,13 or H-8,12), 8.57 (s, 2 H, H-3,17), 8.19 (s, 4 H, H-2′,7′,9′,14′), 7.72-7.69 and 7.28-7.25 (2 m, 8 H, H-3′,6′,10′,13′ and H-4′,5′,11′,12′), 6.68 (s, 2 H, H-1′,8′). 13C NMR (75 MHz, CDCl3, based on the HSQC and HMBC spectra): δ = 138.0 (C-1′a,7′a,8′a,14′), 132.6 (C-2′a,6′a,9′,13′), 127.5 (C-2′,7′,9′,14′), 127.2 (C-3′,6′,10′,13′), 126.0 (C-4′,5′,11′,12′), 125.0 and 124.7 (C-7,13 and C-8,12), 115.6 (C-1′,8′). HRMS-FAB [M + H]+: m/z = 1073.1791 (calcd for C59H24N4F15: 1073.1761). UV/Vis (CH2Cl2): λmax (log ε) = 424 (5.01), 565 (4.07), 615 nm (3.91).
33Examples of thermal [4+4] cycloaddition reactions have been reported in the literature. In some cases [4+4] cycloadditions compete with Diels-Alder reactions. [34-37]