Abstract
The relationships between both metabolic (E) and mechanical (W) energy expended and exhaustion time (te), was determined for 11 well-trained subjects during constant load cycloergometric exercises at 95, 100, 110, 115 % maximal aerobic power performed both from rest and, without interruption, after an all-out sprint of 7 s. These relationships were well described by straight lines: y = a + bte, where b was taken as the critical power (metabolic and mechanical) that can be sustained for long periods of time. b was unaffected by the exercise conditions and amounted to 82 - 94 % of maximal aerobic metabolic and mechanical power. The constant a was taken as the anaerobic stores capacity in excess of the O2 deficit. When the test was preceded by the sprint, a (metabolic and mechanical) was reduced to about 60 - 70 % of control values. This reduction was essentially equal to the corresponding E and W output during the sprint. These data support the view that the slope of linear regressions of E and W on te is indeed a measure of the critical power, whereas the y intercept of these same regressions is a measure of the anaerobic capacity.
Key words
Anaerobic work capacity - critical power - endurance time - exercise - maximal aerobic power - oxygen uptake kinetics
References
-
1
Barstow T J, Mole P A.
Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise.
J Appl Physiol.
1991;
71
2099-2106
-
2
Billat V, Blondel N, Berthoin S.
Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake.
Eur J Appl Physiol.
1999;
80
159-161
-
3
Billat V, Morton R H, Blondel N, Berthoin S, Bocquet V, Koralsztein J P, Barstow T J.
Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake.
Eur J Appl Physiol.
2000;
82
178-187
-
4
Billat V, Koralstzein J P, Morton R H.
Time in human endurance models.
Sports Med.
1999;
27
359-379
-
5 Cerretelli, Prampero di P E. Gas exchange in exercise. Fishman AP (Section ed), Farhi LE, Tenney SM (volume eds). Handbook of Physiology. Section 3: The Respiratory System. Volume IV: Gas Exchange. Bethesda, Maryland (USA); American Physiological Society 1987: 297-339
-
6
Francescato M P, Cettolo V, Prampero di P E.
Relationship between mechanical power, O2 consumption, O2 deficit and high energy phosphates during calf exercise in humans.
Pfluger's Arch Eur J Physiol.
2003;
445
622-628
-
7
Grassi B.
Skeletal muscle V·O2 on-kinetics: set by delivery or by O2 utilization? New insights into an old issue.
Med Sci Sports Exerc.
2000;
32
108-116
-
8
Green S.
Measurement of anaerobic work capacities in humans.
Sports Med.
1995;
19
32-42
-
9
Heubert R, Bocquet V, Koralsztein J P, Billat V.
Effet de 4 semaines d'entraînement sur le temps limite à V·O2max.
Can J Appl Physiol.
2003;
28
717-736
-
10
Hill D W.
The critical power concept.
Sports Med.
1993;
16
237-254
-
11
Hirvonen J, Rehunen S, Rusko H, Harkonen M.
Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise.
Eur J Appl Physiol.
1987;
56
253-259
-
12
Howley E T, Bassett D R, Welch H G.
Criteria for maximal oxygen uptake: review and commentary.
Med Sci Sports Exerc.
1995;
27
1292-1301
-
13
Lloyd B B.
The energetics of running: an analysis of world records.
Adv Sci.
1966;
22
515-530
-
14
Morton R H.
A 3-parameter critical power model.
Ergonomics.
1996;
39
611-619
-
15
Morton R H, Hodgson D J.
The relationship between power output and endurance: a brief review.
Eur J Appl Physiol.
1996;
73
491-502
-
16
Peres G.
Aspect particulier de la relation charge-vitesse lors du pédalage sur cyclo ergomètre.
J Physiol (Paris).
1981;
77
10
-
17
Piiper J, Prampero di P E, Cerretelli P.
O2 debt and high energy phosphates in the gastrocnemius muscle of the dog.
Am J Physiol.
1968;
215
523-531
-
18
Pirnay F, Crielaard J M.
Mesure de la puissance anaérobique alactique.
Med Sport.
1979;
53
13-16
-
19
Prampero di P E.
Energetics of muscular exercise.
Rev Physiol Biochem Pharmacol.
1981;
89
143-222
-
20
Prampero di P E.
The concept of critical velocity: a brief analysis.
Eur J Appl Physiol.
1999;
80
162-164
-
21
Prampero di P E.
Factors limiting maximal performance in humans.
Eur J Appl Physiol.
2003;
90
420-429
-
22
Prampero di P E, Ferretti G.
The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts.
Resp Physiol.
1999;
118
103-115
-
23
Prampero di P E, Francescato M P, Cettolo V.
Energetics of muscular exercise at work onset: the steady state approach.
Pfluger's Arch Eur J Physiol.
2003;
445
741-746
-
24
Scherrer J, Monod H.
Le travail musculaire local et la fatigue chez l'homme.
J Physiol (Paris).
1966;
52
419-501
-
25
Smith J C, Stephens D P, Hall E L, Jackson A W, Earnest P C.
Effect of oral creatine ingestion on parameters of the work rate-time relationship and time to exhaustion in high-intensity cycling.
Eur J Appl Physiol.
1998;
77
360-365
-
26
Taylor H L, Buskirk E, Henschel A.
Maximal oxygen intake as an objective measure of cardiorespiratory performance.
J Appl Physiol.
1955;
18
73-80
-
27
Vandewalle H, Peres G, Monod H.
Standard anaerobic exercise tests.
Sports Med.
1987;
4
268-289
-
28
Vandewalle H, Peres G, Monod H.
Force-velocity relationship and maximal power on a cycle ergometer.
Eur J Appl Physiol.
1987;
56
650-656
-
29
Vandewalle H, Vautier J F, Kachouri M, Lechevalier J M, Monod H.
Work-exhaustion time relationships and the critical power concept.
J Sports Med Phys Fitness.
1997;
37
89-102
-
30 Wilkie D R. Equations describing power input by humans as a function of duration of exercise. Cerretelli P, Whipp BJ Exercise Bioenergetics and Gas Exchange. Amsterdam; Elsevier 1980: 75-81
-
31
Whipp B J, Ozyener F.
The kinetics of exertional oxygen uptake: assumptions and inferences.
Med Sport.
1998;
51
139-49
Richard A. P. Heubert
Centre de médecine du sport CCAS
2 avenue Richerand
75010 Paris
France
Telefon: + 33142014629
Fax: + 33 1 42 39 20 83
eMail: r_heubert@yahoo.fr