Int J Sports Med 2005; 26(7): 583-592
DOI: 10.1055/s-2004-830335
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effect of a Previous Sprint on the Parameters of the Work-Time to Exhaustion Relationship in High Intensity Cycling

R. A. P. Heubert1 , V. L. Billat1 , 2 , P. Chassaing1 , V. Bocquet1 , R. H. Morton3 , J. P. Koralsztein1 , P. E. di Prampero4
  • 1Centre de médecine du sport CCAS, Paris, France
  • 2Département STAPS. Université Evry, Val d'Essonne, Evry, France
  • 3Institute of Food, Nutrition and Human Health, Massey University, Palmarston North, New Zealand
  • 4Universita degli Studi di Udine. Dipartimento di scienze e tecnologie biomediche, Udine, Italy
Further Information

Publication History

Accepted after revision: July 28, 2004

Publication Date:
26 November 2004 (online)

Abstract

The relationships between both metabolic (E) and mechanical (W) energy expended and exhaustion time (te), was determined for 11 well-trained subjects during constant load cycloergometric exercises at 95, 100, 110, 115 % maximal aerobic power performed both from rest and, without interruption, after an all-out sprint of 7 s. These relationships were well described by straight lines: y = a + bte, where b was taken as the critical power (metabolic and mechanical) that can be sustained for long periods of time. b was unaffected by the exercise conditions and amounted to 82 - 94 % of maximal aerobic metabolic and mechanical power. The constant a was taken as the anaerobic stores capacity in excess of the O2 deficit. When the test was preceded by the sprint, a (metabolic and mechanical) was reduced to about 60 - 70 % of control values. This reduction was essentially equal to the corresponding E and W output during the sprint. These data support the view that the slope of linear regressions of E and W on te is indeed a measure of the critical power, whereas the y intercept of these same regressions is a measure of the anaerobic capacity.

References

  • 1 Barstow T J, Mole P A. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise.  J Appl Physiol. 1991;  71 2099-2106
  • 2 Billat V, Blondel N, Berthoin S. Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake.  Eur J Appl Physiol. 1999;  80 159-161
  • 3 Billat V, Morton R H, Blondel N, Berthoin S, Bocquet V, Koralsztein J P, Barstow T J. Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake.  Eur J Appl Physiol. 2000;  82 178-187
  • 4 Billat V, Koralstzein J P, Morton R H. Time in human endurance models.  Sports Med. 1999;  27 359-379
  • 5 Cerretelli, Prampero di P E. Gas exchange in exercise. Fishman AP (Section ed), Farhi LE, Tenney SM (volume eds). Handbook of Physiology. Section 3: The Respiratory System. Volume IV: Gas Exchange. Bethesda, Maryland (USA); American Physiological Society 1987: 297-339
  • 6 Francescato M P, Cettolo V, Prampero di P E. Relationship between mechanical power, O2 consumption, O2 deficit and high energy phosphates during calf exercise in humans.  Pfluger's Arch Eur J Physiol. 2003;  445 622-628
  • 7 Grassi B. Skeletal muscle V·O2 on-kinetics: set by delivery or by O2 utilization? New insights into an old issue.  Med Sci Sports Exerc. 2000;  32 108-116
  • 8 Green S. Measurement of anaerobic work capacities in humans.  Sports Med. 1995;  19 32-42
  • 9 Heubert R, Bocquet V, Koralsztein J P, Billat V. Effet de 4 semaines d'entraînement sur le temps limite à V·O2max.  Can J Appl Physiol. 2003;  28 717-736
  • 10 Hill D W. The critical power concept.  Sports Med. 1993;  16 237-254
  • 11 Hirvonen J, Rehunen S, Rusko H, Harkonen M. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise.  Eur J Appl Physiol. 1987;  56 253-259
  • 12 Howley E T, Bassett D R, Welch H G. Criteria for maximal oxygen uptake: review and commentary.  Med Sci Sports Exerc. 1995;  27 1292-1301
  • 13 Lloyd B B. The energetics of running: an analysis of world records.  Adv Sci. 1966;  22 515-530
  • 14 Morton R H. A 3-parameter critical power model.  Ergonomics. 1996;  39 611-619
  • 15 Morton R H, Hodgson D J. The relationship between power output and endurance: a brief review.  Eur J Appl Physiol. 1996;  73 491-502
  • 16 Peres G. Aspect particulier de la relation charge-vitesse lors du pédalage sur cyclo ergomètre.  J Physiol (Paris). 1981;  77 10
  • 17 Piiper J, Prampero di P E, Cerretelli P. O2 debt and high energy phosphates in the gastrocnemius muscle of the dog.  Am J Physiol. 1968;  215 523-531
  • 18 Pirnay F, Crielaard J M. Mesure de la puissance anaérobique alactique.  Med Sport. 1979;  53 13-16
  • 19 Prampero di P E. Energetics of muscular exercise.  Rev Physiol Biochem Pharmacol. 1981;  89 143-222
  • 20 Prampero di P E. The concept of critical velocity: a brief analysis.  Eur J Appl Physiol. 1999;  80 162-164
  • 21 Prampero di P E. Factors limiting maximal performance in humans.  Eur J Appl Physiol. 2003;  90 420-429
  • 22 Prampero di P E, Ferretti G. The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts.  Resp Physiol. 1999;  118 103-115
  • 23 Prampero di P E, Francescato M P, Cettolo V. Energetics of muscular exercise at work onset: the steady state approach.  Pfluger's Arch Eur J Physiol. 2003;  445 741-746
  • 24 Scherrer J, Monod H. Le travail musculaire local et la fatigue chez l'homme.  J Physiol (Paris). 1966;  52 419-501
  • 25 Smith J C, Stephens D P, Hall E L, Jackson A W, Earnest P C. Effect of oral creatine ingestion on parameters of the work rate-time relationship and time to exhaustion in high-intensity cycling.  Eur J Appl Physiol. 1998;  77 360-365
  • 26 Taylor H L, Buskirk E, Henschel A. Maximal oxygen intake as an objective measure of cardiorespiratory performance.  J Appl Physiol. 1955;  18 73-80
  • 27 Vandewalle H, Peres G, Monod H. Standard anaerobic exercise tests.  Sports Med. 1987;  4 268-289
  • 28 Vandewalle H, Peres G, Monod H. Force-velocity relationship and maximal power on a cycle ergometer.  Eur J Appl Physiol. 1987;  56 650-656
  • 29 Vandewalle H, Vautier J F, Kachouri M, Lechevalier J M, Monod H. Work-exhaustion time relationships and the critical power concept.  J Sports Med Phys Fitness. 1997;  37 89-102
  • 30 Wilkie D R. Equations describing power input by humans as a function of duration of exercise. Cerretelli P, Whipp BJ Exercise Bioenergetics and Gas Exchange. Amsterdam; Elsevier 1980: 75-81
  • 31 Whipp B J, Ozyener F. The kinetics of exertional oxygen uptake: assumptions and inferences.  Med Sport. 1998;  51 139-49

Richard A. P. Heubert

Centre de médecine du sport CCAS

2 avenue Richerand

75010 Paris

France

Phone: + 33142014629

Fax: + 33 1 42 39 20 83

Email: r_heubert@yahoo.fr