References
<A NAME="RD32304ST-1A">1a</A>
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
<A NAME="RD32304ST-1B">1b</A>
McReynolds MD.
Dougherty JM.
Hanson PR.
Chem. Rev.
2004,
104:
2239 , and reviews cited therein
<A NAME="RD32304ST-2">2</A>
Alcaide B.
Almendros P.
Chem.-Eur. J.
2003,
9:
1259
<A NAME="RD32304ST-3">3</A>
Schmidt B.
Eur. J. Org. Chem.
2004,
1865
<A NAME="RD32304ST-4A">4a</A>
Fürstner A.
Thiel OR.
Ackermann L.
Schanz H.-J.
Nolan SP.
J. Org. Chem.
2000,
65:
2204
<A NAME="RD32304ST-4B">4b</A>
Kinderman SS.
Doodeman R.
van Beijma JW.
Russcher JC.
Tjen KCMF.
Kooistra TM.
Mohaselzadeh H.
van Maarseveen JH.
Hiemstra H.
Schoemaker HE.
Rutjes FPJT.
Adv. Synth. Catal.
2002,
344:
736
<A NAME="RD32304ST-4C">4c</A>
Sutton AE.
Seigal BA.
Finnegan DF.
Snapper ML.
J. Am. Chem. Soc.
2002,
124:
13390
<A NAME="RD32304ST-4D">4d</A>
De Clercq B.
Verpoort F.
J. Organomet. Chem.
2003,
672:
11
<A NAME="RD32304ST-4E">4e</A>
Louie J.
Bielawski CW.
Grubbs RH.
J. Am. Chem. Soc.
2001,
123:
11312
<A NAME="RD32304ST-4F">4f</A>
Schmidt B.
Pohler M.
Org. Biomol. Chem.
2003,
1:
2512
<A NAME="RD32304ST-4G">4g</A>
van Otterlo WAL.
Ngidi EL.
Coyanis EM.
de Koning CB.
Tetrahedron Lett.
2003,
44:
311
<A NAME="RD32304ST-4H">4h</A>
Fogg DE.
Amoroso D.
Drouin SD.
Snelgrove J.
Conrad J.
Zamanian F.
J. Mol. Catal. A: Chem.
2002,
190:
177
<A NAME="RD32304ST-4I">4i</A>
Moreno-Mañas M.
Pleixats R.
Santamaria A.
Synlett
2001,
1784
<A NAME="RD32304ST-4J">4j</A>
Schmidt B.
Chem. Commun.
2004,
742
<A NAME="RD32304ST-4K">4k</A>
Rosillo M.
Casarrubios L.
Domínguez G.
Pérez-Castells J.
Org. Biomol. Chem.
2003,
1:
1450
<A NAME="RD32304ST-5A">5a</A>
van Otterlo WAL.
Ngidi EL.
de Koning CB.
Tetrahedron Lett.
2003,
44:
6483
<A NAME="RD32304ST-5B">5b</A>
van Otterlo WAL.
Pathak R.
de Koning CB.
Synlett
2003,
1859
<A NAME="RD32304ST-5C">5c</A>
van Otterlo WAL.
Ngidi EL.
de Koning CB.
Fernandes MA.
Tetrahedron Lett.
2004,
45:
659
<A NAME="RD32304ST-6A">6a</A>
Coombs MM.
Benzocyclopropene, Benzocyclobutene and Indene, and their Derivatives, In Rodd’s Chemistry of Carbon Compounds
2nd ed., 2nd Suppl., Vol. IIIF(partial)/IIIG/IIIH:
Sainsbury M.
Elsevier;
Amsterdam:
1995.
<A NAME="RD32304ST-6B">6b</A>
Ivchenko NB.
Ivchenko PV.
Nifant’ev IE.
Russ. J. Org. Chem.
2000,
36:
609
<A NAME="RD32304ST-7">7</A>
Ishiguru Y.
Okamoto K.
Ojima F.
Sonoda Y.
Chem. Lett.
1993,
1139
<A NAME="RD32304ST-8">8</A>
Sengupta P.
Sen M.
Niyogi SK.
Pakrashi SC.
Ali E.
Phytochemistry
1976,
15:
995
<A NAME="RD32304ST-9">9</A>
Harrowven DC.
Newman NA.
Knight CA.
Tetrahedron Lett.
1998,
39:
6757
<A NAME="RD32304ST-10A">10a</A>
Chang K.-J.
Rayabarapu DK.
Cheng C.-H.
J. Org. Chem.
2004,
69:
4781
<A NAME="RD32304ST-10B">10b</A>
Quan LG.
Gevorgyan V.
Yamamoto Y.
J. Am. Chem. Soc.
1999,
121:
3545
<A NAME="RD32304ST-10C">10c</A>
Gevorgyan V.
Quan LG.
Yamamoto Y.
Tetrahedron Lett.
1999,
40:
4089
<A NAME="RD32304ST-10D">10d</A>
Vicente J.
Abad J.-A.
Gil-Rubio J.
Organometallics
1996,
15:
3509
<A NAME="RD32304ST-11A">11a</A>
Pletnev AA.
Tian Q.
Larock RC.
J. Org. Chem.
2002,
67:
9276
<A NAME="RD32304ST-11B">11b</A>
Padwa A.
Molecules
2001,
6:
1
<A NAME="RD32304ST-11C">11c</A>
Fukuyama T.
Chatani N.
Kakiuchi F.
Murai S.
J. Org. Chem.
1997,
62:
5647
<A NAME="RD32304ST-12">12</A> For a recently reported route to an indenol using a RCM approach see:
Clive DLJ.
Yu M.
Sannigrahi M.
J. Org. Chem.
2004,
69:
4116
<A NAME="RD32304ST-13">13</A>
Work taken from the post-doctoral research project of Dr. E. M. Coyanis and the ongoing
MSc project of Ms J.-L. Panayides.
<A NAME="RD32304ST-14">14</A>
de Koning CB.
Michael JP.
Rousseau AL.
J. Chem. Soc., Perkin Trans. 1
2000,
787
<A NAME="RD32304ST-15">15</A>
Krompiec S.
KuŸ
nik N.
Penczek R.
Rzepa J.
Mrowiec-Bialoñ
J.
J. Mol. Catal. A: Chem.
2004,
219:
29 ; and citations therein
<A NAME="RD32304ST-16A">16a</A>
Huang K.-S.
Wang E.-C.
Tetrahedron Lett.
2001,
42:
6155
<A NAME="RD32304ST-16B">16b</A>
de Koning CB.
Giles RGF.
Green IR.
Jahed NM.
Tetrahedron
2003,
59:
3175
<A NAME="RD32304ST-17">17</A>
Typical Experimental Procedure for Forming Indenols:
Grubbs catalyst 1 (5 mol%) was added to a degassed solution (N2) of 5a (262 mg, 0.62 mmol) in CH2Cl2 (25 mL). The solution was then stirred under N2 at r.t. for 3 h. After evaporation of the solvent and column chromatographic purification
of the residue (5-10% EtOAc-hexane), 4-isopropoxy-5-methoxy-1H-inden-1-ol (6a) was obtained as a pale yellow oil (191 mg, 87%). 1H NMR (200 MHz, CDCl3, assignments with the same superscript may be interchanged): δ = 7.12 (d, 1 H, J = 7.9 Hz, 7-H), 6.73 (d, 1 H, J = 5.6 Hz, 3-H), 6.66 (d, 1 H, J = 7.9 Hz, 2-H), 6.27 (dd, 1 H, J = 5.6 and 2.0 Hz, 6-H), 5.04 (br s, 1 H, 1-H), 4.33 [br sept, 1 H, J = 6.2 Hz, CH(CH3)2], 3.80 (s, 3 H, OCH3), 2.08 (br s, 1 H, OH), 1.28 [d, 3 H, J = 6.4 Hz, CH(CH
3)CH3], 1.25 [d, 3 H, J = 6.5 Hz, CH(CH3)CH
3]. 13C NMR (50 MHz, CDCl3): δ = 153.3 (C), 140.1 (C), 138.4 (C), 137.8 (CH), 136.7 (C), 129.2 (CH), 118.9 (CH),
109.4 (CH), 77.1 (OCH), 75.6 (C-O), 55.9 (OCH3), 22.5 (CH3), 22.4 (CH3).
IR: 3400(br), 1674, 1617, 1596, 1556 cm-1. HRMS (CI):
m/z calcd for C13H16O3: 220.10995; found: 220.10990. MS: m/z (%) = 220 (69) [M
+
], 179 (18), 178 (100), 177 (28), 176 (16), 163 (41), 161 (12), 149 (16), 147 (18),
146 (18), 135 (10), 118 (10), 77 (10), 69 (11), 57 (14), 55 (12), 43 (28), 41 (19).
<A NAME="RD32304ST-18">18</A>
All new compounds were identified using routine spectroscopy and gave satisfactory
data.
<A NAME="RD32304ST-19">19</A>
In an attempt to improve the yields of indenols 6d and 6e we protected the alcohol functionalities of 5d and 5e with acetyl groups. However, much to our surprise, the RCM reactions of these substrates,
at r.t. or at 110 °C, did not proceed to afford the acetyl-protected cyclic products
and only starting material was recovered.
<A NAME="RD32304ST-20">20</A>
Typical Experimental Procedure for Forming Indenones:
Grubbs catalyst 1 (8 mol%) was added to a degassed solution (N2) of 5a (141 mg, 0.54 mmol) in toluene (10 mL). The solution was then heated at 80 °C under
N2 for 2 h. Evaporation of the solvent and column chromatographic purification of the
residue (20% EtOAc-hexane) then afforded 4-isopropoxy-5-methoxyinden-1-one (7a) as a yellow semi-solid (72 mg, 62%). 1H NMR (200 MHz, CDCl3): δ = 7.64 (d, 1 H, J = 5.8 Hz, H-3), 7.38 (d, 1 H, J = 7.8 Hz, H-7), 6.60 (d, 1 H, J = 7.8 Hz, H-6), 5.86 (d, 1 H, J = 5.8 Hz, H-2), 4.40 [sept, 1 H, J = 6.1 Hz, CH(CH3)2], 3.87 (s, 3 H, OCH3), 1.31 [d, 6 H, J = 6.1 Hz, CH(CH
3)2]. 13C NMR (50 MHz, CDCl3): δ = 197.2 (C=O), 158.8 (C), 145.5 (CH), 142.0 (C), 137.5 (C), 127.9 (CH), 123.9
(C), 119.7 (CH), 109.8 (CH), 75.9 (OCH), 56.1 (OCH3), 22.4 (CH3). IR: 1708, 1604 cm-1. HRMS (CI): m/z calcd for C13H14O3: 218.09430; found: 218.09433. MS: m/z (%) = 218 (29) [M
+
], 193 (21), 178 (20), 177 (40), 176 (100), 175 (25), 163 (17), 161 (23), 149 (37),
147 (20), 105 (21), 91 (17), 77 (26), 73 (23), 69 (22), 57 (33), 55 (26), 43 (49),
41 (46).
<A NAME="RD32304ST-21">21</A>
X-ray crystal structure of 4-isopropoxy-5-methoxy-2-methyl-3-phenylinden-1-one (7f): crystallized from CHCl3, formula: C20H20O3, M = 308.36, color of crystal: yellow, prism, crystal size 0.31 × 0.20 × 0.02 mm, a = 6.3298 (11) Å, b = 18.133 (3) Å, c = 7.7645 (13) Å, β = 110.094 (3)°, V = 836.9 (2) Å3, ρcalc = 1.224 Mg/m3, µ = 0.081 mm-1, F(000) = 328, Z = 2, monoclinic, space group P21, T = 293 K, 5132 reflections collected, 2444 independent reflections, θmax = 26.50°, 212 refined parameters, maximum residual electron density 0.129 and -0.161
e·Å-3. R1 = 0.0421, wR2 = 0.0813. Crystallographic data for the structure have been deposited with the Cambridge
Crystallographic Data Centre as deposition No. CCDC-250072.
<A NAME="RD32304ST-22">22</A> Storage of the indenols (as oils) without the exclusion of air resulted in a
slow conversion into indenones (ca. 5% over six months)
A literature search also revealed that mild oxidants such a MnO2,23a chromium(III)(salen) with PhI(OAc)2
23b or PhIO23c have been successfully used to accomplish the indenol to indenone transformation.
See
<A NAME="RD32304ST-23A">23a</A>
Wu Y.
Ahlberg P.
Acta Chem. Scand.
1995,
49:
364
<A NAME="RD32304ST-23B">23b</A>
Adam W.
Hajra S.
Herderich M.
Saha-Möller CR.
Org. Lett.
2000,
2:
2773
<A NAME="RD32304ST-23C">23c</A>
Adam W.
Gadissa Gelalcha F.
Saha-Möller CR.
Stegmann VR.
J. Org. Chem.
2000,
65:
1915
<A NAME="RD32304ST-24A">24a</A>
Cho JH.
Kim BM.
Org. Lett.
2003,
5:
531
<A NAME="RD32304ST-24B">24b</A>
Mi Ahn Y.
Yang K.
Georg GI.
Org. Lett.
2001,
3:
1411
<A NAME="RD32304ST-25A">25a</A>
Westhus M.
Gonthier E.
Brohm D.
Breinbauer R.
Tetrahedron Lett.
2004,
45:
3141
<A NAME="RD32304ST-25B">25b</A>
Gonthier E.
Breinbauer R.
Synlett
2003,
1049
When a NMR spectroscopically monitored experiment (d
8-toluene) was conducted on 5a (with catalyst 1) at 105 °C, evidence suggested that a ruthenium-promoted redox isomerization was
occurring to form the corresponding indanone 8. See the following references describing this type of transformation mediated by
ruthenium metathesis catalysts:
<A NAME="RD32304ST-26A">26a</A>
Greenwood ES.
Parsons PJ.
Young MJ.
Synth. Commun.
2003,
33:
223
<A NAME="RD32304ST-26B">26b</A>
Gurjar MK.
Yakambram P.
Tetrahedron Lett.
2001,
42:
3633
<A NAME="RD32304ST-26C">26c</A>
Trost BM.
Kulawiec RJ.
J. Am. Chem. Soc.
1993,
115:
2027 . Repeating the experiment in a conventional manner on substrate 5a [toluene, catalyst 1 (5%), r.t., 24 h, then ca. 100 °C, 18 h] gave the indanone 8 in an unoptimized yield of 51%; its structure was confirmed by various spectroscopic
techniques. To the best of our knowledge this constitutes the first report of a tandem
RCM-redox isomerization reaction and we will be investigating reactions of this type
in more detail. 4-Isopropoxy-5-methoxyindan-1-one (8): 1H NMR (200 MHz, CDCl3): δ = 7.48 (d, 1 H, J = 8.3 Hz, 7-H), 6.95 (d, 1 H, J = 8.3 Hz, 6-H), 4.51 [sept, 1 H, J = 6.1 Hz, CH(CH3)2], 3.90 (s, 3 H, OCH3), 3.08-3.02 (m, 2 H, 2-H), 2.66-2.60 (m, 2 H, 3-H), 1.29 [d, 6 H, J = 6.1 Hz, CH(CH
3)2]. 13C NMR (50 MHz, CDCl3): δ = 205.6 (C=O), 157.6 (C), 149.0 (C), 143.4 (C), 131.0 (C), 119.7 (CH), 112.1
(CH), 74.6 (OCH), 56.1 (OCH3), 36.4 (C-2), 22.9 (C-3), 22.7 (CH3). IR: 1708, 1598 cm-1. HRMS (CI): m/z calcd for C13H16O3: 220.10995; found: 220.10989. MS: m/z (%) = 220 (33) [M
+
], 178 (100), 163 (8), 150 (6), 149 (6), 135 (15), 107 (10)
<A NAME="RD32304ST-27A">27a</A>
Meijer RH.
Ligthart GBWL.
Meuldijk J.
Vekemans JAJM.
Hulshof LA.
Mills AM.
Kooijman H.
Spek AL.
Tetrahedron
2004,
60:
1065
<A NAME="RD32304ST-27B">27b</A>
Ligthart GBWL.
Meijer RH.
Donners MPJ.
Meuldijk J.
Vekemans JAJM.
Hulshof LA.
Tetrahedron Lett.
2003,
44:
1507
<A NAME="RD32304ST-27C">27c</A>
Choi JH.
Kim N.
Shin YJ.
Park JH.
Park J.
Tetrahedron Lett.
2004,
45:
4607