References
1a
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
1b
McReynolds MD.
Dougherty JM.
Hanson PR.
Chem. Rev.
2004,
104:
2239 , and reviews cited therein
2
Alcaide B.
Almendros P.
Chem.-Eur. J.
2003,
9:
1259
3
Schmidt B.
Eur. J. Org. Chem.
2004,
1865
4a
Fürstner A.
Thiel OR.
Ackermann L.
Schanz H.-J.
Nolan SP.
J. Org. Chem.
2000,
65:
2204
4b
Kinderman SS.
Doodeman R.
van Beijma JW.
Russcher JC.
Tjen KCMF.
Kooistra TM.
Mohaselzadeh H.
van Maarseveen JH.
Hiemstra H.
Schoemaker HE.
Rutjes FPJT.
Adv. Synth. Catal.
2002,
344:
736
4c
Sutton AE.
Seigal BA.
Finnegan DF.
Snapper ML.
J. Am. Chem. Soc.
2002,
124:
13390
4d
De Clercq B.
Verpoort F.
J. Organomet. Chem.
2003,
672:
11
4e
Louie J.
Bielawski CW.
Grubbs RH.
J. Am. Chem. Soc.
2001,
123:
11312
4f
Schmidt B.
Pohler M.
Org. Biomol. Chem.
2003,
1:
2512
4g
van Otterlo WAL.
Ngidi EL.
Coyanis EM.
de Koning CB.
Tetrahedron Lett.
2003,
44:
311
4h
Fogg DE.
Amoroso D.
Drouin SD.
Snelgrove J.
Conrad J.
Zamanian F.
J. Mol. Catal. A: Chem.
2002,
190:
177
4i
Moreno-Mañas M.
Pleixats R.
Santamaria A.
Synlett
2001,
1784
4j
Schmidt B.
Chem. Commun.
2004,
742
4k
Rosillo M.
Casarrubios L.
Domínguez G.
Pérez-Castells J.
Org. Biomol. Chem.
2003,
1:
1450
5a
van Otterlo WAL.
Ngidi EL.
de Koning CB.
Tetrahedron Lett.
2003,
44:
6483
5b
van Otterlo WAL.
Pathak R.
de Koning CB.
Synlett
2003,
1859
5c
van Otterlo WAL.
Ngidi EL.
de Koning CB.
Fernandes MA.
Tetrahedron Lett.
2004,
45:
659
6a
Coombs MM.
Benzocyclopropene, Benzocyclobutene and Indene, and their Derivatives, In Rodd’s Chemistry of Carbon Compounds
2nd ed., 2nd Suppl., Vol. IIIF(partial)/IIIG/IIIH:
Sainsbury M.
Elsevier;
Amsterdam:
1995.
6b
Ivchenko NB.
Ivchenko PV.
Nifant’ev IE.
Russ. J. Org. Chem.
2000,
36:
609
7
Ishiguru Y.
Okamoto K.
Ojima F.
Sonoda Y.
Chem. Lett.
1993,
1139
8
Sengupta P.
Sen M.
Niyogi SK.
Pakrashi SC.
Ali E.
Phytochemistry
1976,
15:
995
9
Harrowven DC.
Newman NA.
Knight CA.
Tetrahedron Lett.
1998,
39:
6757
10a
Chang K.-J.
Rayabarapu DK.
Cheng C.-H.
J. Org. Chem.
2004,
69:
4781
10b
Quan LG.
Gevorgyan V.
Yamamoto Y.
J. Am. Chem. Soc.
1999,
121:
3545
10c
Gevorgyan V.
Quan LG.
Yamamoto Y.
Tetrahedron Lett.
1999,
40:
4089
10d
Vicente J.
Abad J.-A.
Gil-Rubio J.
Organometallics
1996,
15:
3509
11a
Pletnev AA.
Tian Q.
Larock RC.
J. Org. Chem.
2002,
67:
9276
11b
Padwa A.
Molecules
2001,
6:
1
11c
Fukuyama T.
Chatani N.
Kakiuchi F.
Murai S.
J. Org. Chem.
1997,
62:
5647
12 For a recently reported route to an indenol using a RCM approach see: Clive DLJ.
Yu M.
Sannigrahi M.
J. Org. Chem.
2004,
69:
4116
13 Work taken from the post-doctoral research project of Dr. E. M. Coyanis and the ongoing MSc project of Ms J.-L. Panayides.
14
de Koning CB.
Michael JP.
Rousseau AL.
J. Chem. Soc., Perkin Trans. 1
2000,
787
15
Krompiec S.
KuŸnik N.
Penczek R.
Rzepa J.
Mrowiec-Bialoñ
J.
J. Mol. Catal. A: Chem.
2004,
219:
29 ; and citations therein
16a
Huang K.-S.
Wang E.-C.
Tetrahedron Lett.
2001,
42:
6155
16b
de Koning CB.
Giles RGF.
Green IR.
Jahed NM.
Tetrahedron
2003,
59:
3175
17
Typical Experimental Procedure for Forming Indenols:
Grubbs catalyst 1 (5 mol%) was added to a degassed solution (N2) of 5a (262 mg, 0.62 mmol) in CH2Cl2 (25 mL). The solution was then stirred under N2 at r.t. for 3 h. After evaporation of the solvent and column chromatographic purification of the residue (5-10% EtOAc-hexane), 4-isopropoxy-5-methoxy-1H-inden-1-ol (6a) was obtained as a pale yellow oil (191 mg, 87%). 1H NMR (200 MHz, CDCl3, assignments with the same superscript may be interchanged): δ = 7.12 (d, 1 H, J = 7.9 Hz, 7-H), 6.73 (d, 1 H, J = 5.6 Hz, 3-H), 6.66 (d, 1 H, J = 7.9 Hz, 2-H), 6.27 (dd, 1 H, J = 5.6 and 2.0 Hz, 6-H), 5.04 (br s, 1 H, 1-H), 4.33 [br sept, 1 H, J = 6.2 Hz, CH(CH3)2], 3.80 (s, 3 H, OCH3), 2.08 (br s, 1 H, OH), 1.28 [d, 3 H, J = 6.4 Hz, CH(CH
3)CH3], 1.25 [d, 3 H, J = 6.5 Hz, CH(CH3)CH
3]. 13C NMR (50 MHz, CDCl3): δ = 153.3 (C), 140.1 (C), 138.4 (C), 137.8 (CH), 136.7 (C), 129.2 (CH), 118.9 (CH), 109.4 (CH), 77.1 (OCH), 75.6 (C-O), 55.9 (OCH3), 22.5 (CH3), 22.4 (CH3).
IR: 3400(br), 1674, 1617, 1596, 1556 cm-1. HRMS (CI):
m/z calcd for C13H16O3: 220.10995; found: 220.10990. MS: m/z (%) = 220 (69) [M
+
], 179 (18), 178 (100), 177 (28), 176 (16), 163 (41), 161 (12), 149 (16), 147 (18), 146 (18), 135 (10), 118 (10), 77 (10), 69 (11), 57 (14), 55 (12), 43 (28), 41 (19).
18 All new compounds were identified using routine spectroscopy and gave satisfactory data.
19 In an attempt to improve the yields of indenols 6d and 6e we protected the alcohol functionalities of 5d and 5e with acetyl groups. However, much to our surprise, the RCM reactions of these substrates, at r.t. or at 110 °C, did not proceed to afford the acetyl-protected cyclic products and only starting material was recovered.
20
Typical Experimental Procedure for Forming Indenones:
Grubbs catalyst 1 (8 mol%) was added to a degassed solution (N2) of 5a (141 mg, 0.54 mmol) in toluene (10 mL). The solution was then heated at 80 °C under N2 for 2 h. Evaporation of the solvent and column chromatographic purification of the residue (20% EtOAc-hexane) then afforded 4-isopropoxy-5-methoxyinden-1-one (7a) as a yellow semi-solid (72 mg, 62%). 1H NMR (200 MHz, CDCl3): δ = 7.64 (d, 1 H, J = 5.8 Hz, H-3), 7.38 (d, 1 H, J = 7.8 Hz, H-7), 6.60 (d, 1 H, J = 7.8 Hz, H-6), 5.86 (d, 1 H, J = 5.8 Hz, H-2), 4.40 [sept, 1 H, J = 6.1 Hz, CH(CH3)2], 3.87 (s, 3 H, OCH3), 1.31 [d, 6 H, J = 6.1 Hz, CH(CH
3)2]. 13C NMR (50 MHz, CDCl3): δ = 197.2 (C=O), 158.8 (C), 145.5 (CH), 142.0 (C), 137.5 (C), 127.9 (CH), 123.9 (C), 119.7 (CH), 109.8 (CH), 75.9 (OCH), 56.1 (OCH3), 22.4 (CH3). IR: 1708, 1604 cm-1. HRMS (CI): m/z calcd for C13H14O3: 218.09430; found: 218.09433. MS: m/z (%) = 218 (29) [M
+
], 193 (21), 178 (20), 177 (40), 176 (100), 175 (25), 163 (17), 161 (23), 149 (37), 147 (20), 105 (21), 91 (17), 77 (26), 73 (23), 69 (22), 57 (33), 55 (26), 43 (49), 41 (46).
21 X-ray crystal structure of 4-isopropoxy-5-methoxy-2-methyl-3-phenylinden-1-one (7f): crystallized from CHCl3, formula: C20H20O3, M = 308.36, color of crystal: yellow, prism, crystal size 0.31 × 0.20 × 0.02 mm, a = 6.3298 (11) Å, b = 18.133 (3) Å, c = 7.7645 (13) Å, β = 110.094 (3)°, V = 836.9 (2) Å3, ρcalc = 1.224 Mg/m3, µ = 0.081 mm-1, F(000) = 328, Z = 2, monoclinic, space group P21, T = 293 K, 5132 reflections collected, 2444 independent reflections, θmax = 26.50°, 212 refined parameters, maximum residual electron density 0.129 and -0.161 e·Å-3. R1 = 0.0421, wR2 = 0.0813. Crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre as deposition No. CCDC-250072.
22 Storage of the indenols (as oils) without the exclusion of air resulted in a slow conversion into indenones (ca. 5% over six months)
A literature search also revealed that mild oxidants such a MnO2,23a chromium(III)(salen) with PhI(OAc)2
23b or PhIO23c have been successfully used to accomplish the indenol to indenone transformation. See
23a
Wu Y.
Ahlberg P.
Acta Chem. Scand.
1995,
49:
364
23b
Adam W.
Hajra S.
Herderich M.
Saha-Möller CR.
Org. Lett.
2000,
2:
2773
23c
Adam W.
Gadissa Gelalcha F.
Saha-Möller CR.
Stegmann VR.
J. Org. Chem.
2000,
65:
1915
24a
Cho JH.
Kim BM.
Org. Lett.
2003,
5:
531
24b
Mi Ahn Y.
Yang K.
Georg GI.
Org. Lett.
2001,
3:
1411
25a
Westhus M.
Gonthier E.
Brohm D.
Breinbauer R.
Tetrahedron Lett.
2004,
45:
3141
25b
Gonthier E.
Breinbauer R.
Synlett
2003,
1049
When a NMR spectroscopically monitored experiment (d
8-toluene) was conducted on 5a (with catalyst 1) at 105 °C, evidence suggested that a ruthenium-promoted redox isomerization was occurring to form the corresponding indanone 8. See the following references describing this type of transformation mediated by ruthenium metathesis catalysts:
26a
Greenwood ES.
Parsons PJ.
Young MJ.
Synth. Commun.
2003,
33:
223
26b
Gurjar MK.
Yakambram P.
Tetrahedron Lett.
2001,
42:
3633
26c
Trost BM.
Kulawiec RJ.
J. Am. Chem. Soc.
1993,
115:
2027 . Repeating the experiment in a conventional manner on substrate 5a [toluene, catalyst 1 (5%), r.t., 24 h, then ca. 100 °C, 18 h] gave the indanone 8 in an unoptimized yield of 51%; its structure was confirmed by various spectroscopic techniques. To the best of our knowledge this constitutes the first report of a tandem RCM-redox isomerization reaction and we will be investigating reactions of this type in more detail. 4-Isopropoxy-5-methoxyindan-1-one (8): 1H NMR (200 MHz, CDCl3): δ = 7.48 (d, 1 H, J = 8.3 Hz, 7-H), 6.95 (d, 1 H, J = 8.3 Hz, 6-H), 4.51 [sept, 1 H, J = 6.1 Hz, CH(CH3)2], 3.90 (s, 3 H, OCH3), 3.08-3.02 (m, 2 H, 2-H), 2.66-2.60 (m, 2 H, 3-H), 1.29 [d, 6 H, J = 6.1 Hz, CH(CH
3)2]. 13C NMR (50 MHz, CDCl3): δ = 205.6 (C=O), 157.6 (C), 149.0 (C), 143.4 (C), 131.0 (C), 119.7 (CH), 112.1 (CH), 74.6 (OCH), 56.1 (OCH3), 36.4 (C-2), 22.9 (C-3), 22.7 (CH3). IR: 1708, 1598 cm-1. HRMS (CI): m/z calcd for C13H16O3: 220.10995; found: 220.10989. MS: m/z (%) = 220 (33) [M
+
], 178 (100), 163 (8), 150 (6), 149 (6), 135 (15), 107 (10)
27a
Meijer RH.
Ligthart GBWL.
Meuldijk J.
Vekemans JAJM.
Hulshof LA.
Mills AM.
Kooijman H.
Spek AL.
Tetrahedron
2004,
60:
1065
27b
Ligthart GBWL.
Meijer RH.
Donners MPJ.
Meuldijk J.
Vekemans JAJM.
Hulshof LA.
Tetrahedron Lett.
2003,
44:
1507
27c
Choi JH.
Kim N.
Shin YJ.
Park JH.
Park J.
Tetrahedron Lett.
2004,
45:
4607