References
Reviews:
1a
Christoffers J. In
Encyclopedia of Catalysis
Vol. 5:
Horvath I.
Wiley;
New York:
2003.
p.99
1b
Krause N.
Hoffmann-Röder A.
Synthesis
2001,
171
1c
Perlmutter P.
Conjugate Addition Reactions in Organic Synthesis
Vol. 9:
Tetrahedron Organic Chemistry Series, Pergamon;
Oxford:
1992.
1d
Oare DA.
Heathcock CH. In
Topics in Stereochemistry
Vol. 19:
Eliel EL.
Wilen SH.
Wiley Interscience;
New York:
1989.
p.227
1e
Bergmann ED.
Ginsburg D.
Pappo R.
Org. React.
1959,
10:
179
1f
Rossiter BE.
Swingle NM.
Chem. Rev.
1992,
92:
771
Reviews:
2a
Denissova I.
Barriault L.
Tetrahedron
2003,
59:
10105
2b
Christoffers J.
Mann A.
Angew. Chem. Int. Ed.
2001,
40:
4591 ; Angew. Chem. 2001, 113, 4725
2c
Corey EJ.
Guzman-Perez A.
Angew. Chem. Int. Ed.
1998,
37:
388 ; Angew. Chem. 1998, 110, 402
3a
Hermann K.
Wynberg H.
Helv. Chim. Acta
1977,
60:
2208
3b
Kobayashi N.
Iwai K.
J. Am. Chem. Soc.
1978,
100:
7071
3c
Kobayashi N.
Iwai K.
J. Polym. Sci., Polym. Chem.
1980,
18:
923
3d
Inagaki M.
Hiratake J.
Yamamoto Y.
Oda J.
Bull. Chem. Soc. Jpn.
1987,
60:
4121
3e
Hodge P.
Khoshdel E.
Waterhouse J.
J. Chem. Soc., Perkin Trans. 1
1983,
2205
3f
Alvarez R.
Hourdin M.-A.
Cavé C.
d’Angelo J.
Chaminade P.
Tetrahedron Lett.
1999,
40:
7091
4a
Christoffers J.
Mann A.
Angew. Chem. Int. Ed.
2000,
39:
2752 ; Angew. Chem. 2000, 112, 2871
4b
Christoffers J.
Mann A.
Chem.-Eur. J.
2001,
7:
1014
4c
Christoffers J.
Scharl H.
Eur. J. Org. Chem.
2002,
1505
4d
Christoffers J.
Kreidler B.
Oertling H.
Unger S.
Frey W.
Synlett
2003,
493
4e
Christoffers J.
Kreidler B.
Unger S.
Frey W.
Eur. J. Org. Chem.
2003,
2845
4f
Christoffers J.
Schuster K.
Chirality
2003,
15:
777
4g Review: Christoffers J.
Chem.-Eur. J.
2003,
9:
4862
5a
Mutter M.
Hagenmaier H.
Bayer E.
Angew. Chem., Int. Ed. Engl.
1971,
10:
811 ; Angew. Chem. 1971, 83, 883
5b
Bayer E.
Mutter M.
Nature
1972,
237:
512
5c
Wentworth P.
Janda KD.
Chem. Commun.
1999,
1917
6a
Benaglia M.
Puglisi A.
Cozzi F.
Chem. Rev.
2003,
103:
3401
6b See also the thematic issue 10, 2002: Gladysz JA.
Chem. Rev.
2002,
102:
3215
7
Tsogoeva SB.
Wöltinger J.
Jost C.
Reichert D.
Kühnle A.
Krimmer H.-P.
Drauz K.
Synlett
2002,
707
8 Load values were calculated by 1H NMR integrals with the polymer signal at δ = 3.45-3.80 ppm as a standard. In the case of 13b the signal at δ = 4.13 ppm (2 H) and for 15b the signal at δ = 2.22 ppm (3 H) were used for integration.
9
Supported N
-(2-Ethoxycarbonyl-1-cyclohexenyl)-l-
valine(4-hydroxypiperidide) (13b).
Immobilized auxiliary 10 (2.50 g, 1.54 mmol), 12b (3.00 g, 17.6 mmol) and one drop of TFA in abs. toluene (8 mL) were heated at 55 ºC for 16 h. Two fold precipitation from abs. Et2O (80 mL) yielded 13b (2.58 g, 99%) as a pale yellow polymer. 1H NMR (300 MHz, CDCl3): δ = 1.00 (d, 3
J = 6.9 Hz, 3 H, CH3), 1.03 (d, 3
J = 6.9 Hz, 3 H, CH3), 1.26 (t, 3
J = 7.1 Hz, 3 H, CH2CH
3), 1.47-1.68 (m, 6 H), 1.77-1.92 (m, 2 H), 1.95-2.14 (m, 2 H), 2.21-2.32 (m, 3 H), 3.23-3.36 (m, 2 H), 3.50-3.74 (m, 140 H, PEG-H), 3.91-4.01 (m, 1 H), 4.13 (q, 3
J = 7.2 Hz, 2 H, OCH2), 9.31 (d, br, 3
J = 8.8 Hz, 1 H, NH) ppm. All other signals are overlapped by resonances of the polymer backbone. 13C{1H} NMR (75 MHz, CDCl3): δ = 14.65 (CH3), 18.42 (CH3), 19.90 (CH2
CH3), 22.35 (CH2), 22.57 (CH2), 23.91 (CH2), 26.75 (CH2), 30.74 (CH2, br, C-3′), 31.81 (CH2, br, C-3′), 31.98 (CH, CHCH3), 39.45 (CH2, br, C-2′), 42.69 (CH2, br, C-2′), 58.38 (CH, CHNH), 58.74 (CH2, OCH2), 74.36 (CH, OCH), 91.47 (C, C-2′′), 157.51 (C, br, CNH), 170.48 (C, CON), 170.62 (C, COO) ppm. IR (ATR): 1/λ = 3483 (w, br), 2882 (s), 1645 (m), 1592 (m), 1466 (m), 1359 (m), 1341 (s), 1279 (m), 1233 (s), 1146 (m), 1103 (vs), 1063 (vs), 948 (s), 841 (s) cm-1. Anal. Calcd for 13b assuming 44 ethylene oxide units in a polymeric backbone of 2000 Da at 72% load: C, 56.77; H, 9.18; N, 1.62. Found: C, 56.42; H, 9.18; N, 1.57.
10
Supported (
R
)-
N
-[2-Ethoxycarbonyl-2-(3-oxobutyl)-1-
cyclohexyliden
e-l-valine (4-hydroxypiperidide)]
(15b).
To a solution of polymer 13b (0.40 g) in acetone (2 mL) was added Cu(OAc)2·H2O (4.0 mg, 0.02 mmol). The mixture was stirred for 1 h at 23 ºC, then 2 (1.00 g, 14.3 mmol) was added. After stirring of the mixture for 2 d, the product polymer was precipitated from Et2O (50 mL) to yield a brown polymer 15b (0.39 g, 99%). 1H NMR (300 MHz, CDCl3): δ = 0.88 (d, 3
J = 6.2 Hz, 3 H, CHCH
3), 0.92-1.02 (m, 3 H, CHCH
3), 1.25 (t, 3
J = 7.1 Hz, 3 H, CH2CH
3), 1.41-1.90 (m, 8 H), 2.09-2.16 (m, 7 H), 2.22 (s, 3 H, COCH3), 2.31-2.70 (m, 2 H), 2.51 (t, 3
J = 6.2 Hz, 2 H), 2.72-3.38 (m, 2 H), 3.44-3.81 (m, 131 H, PEG-H), 3.98-4.23 (m, 2 H), 4.11-4.21 (m, 2 H, OCH2) ppm. 13C{1H} NMR (75 MHz, CDCl3): δ = 18.92 (CH3), 25.19 (CH2), 28.40 (CH2), 29.96 (CH2), 32.58 (CH2), 38.87 (CH2, NCH2), 42.87 (CH2, NCH2) 60.82 (CH, CHN), 67.55 (CH, OCH), 141.78 (C, CN), 173.91 (C, COO), 208.46 (C, CO) ppm. Missing signals cannot be identified from background noise.
11
Ethyl (
R
)-2-Oxo-1-(3-oxobutyl)cyclohexanecarboxylate (
3b).
[15]
Polymer 15b (1.00 g, 0.52 mmol) was stirred in HCl (2 mL, c = 1 mol dm-3) at 0 ºC for 3 h. H2O (20 mL) was added, and the mixture was then extracted with Et2O (3 × 20 mL). The combined ether layers were washed with H2O (50 mL), dried (MgSO4) and evaporated to give 3b (108 mg, 0.45 mmol, 87% reg. 15b) as a colorless oil with 97% purity (determined by 1H NMR spectroscopy). GC for determination of ee value: Bondex unβ
[16]
[20 m × 0.3 mm with hydrogen carrier gas (0.4 bar)], 120 °C isotherm; t
R(R) = 29.75 min; t
R(S) = 30.88 min, 97% ee.
Extraction of the water layers with CH2Cl2 (3 × 50 mL), subsequent washing of the combined CH2Cl2 layers with H2O (50 mL), drying (MgSO4) and removal of all volatile materials under high vacuum gave the re-isolated polymer 10 (867 mg).
12
Christoffers J.
Rößler U.
Werner T.
Eur. J. Org. Chem.
2000,
701
13
Hermann K.
Wynberg H.
J. Org. Chem.
1979,
44:
2238
14
Christoffers J.
Frey W.
Scharl H.
Baro A.
Z. Naturforsch., B: Chem. Sci.
2004,
59:
375
15
Christoffers J.
J. Chem. Soc., Perkin Trans. 1
1997,
3141
16 Bondex-unβ-5.5-et-105 is a chiral poly(dimethylsiloxane) phase which is modified with 0.55 mol% permethyl β-cyclodextrin, covalently bonded by an undecamethylene spacer between one 2-O-function of the cyclodextrin and the polysiloxane backbone. The polysiloxane additionally has 5.25% Si(C2H5)2 instead of Si(CH3)2 groups in the backbone. See: Karpf M.
Dissertation
Universität;
Stuttgart:
1995.