Plant Biol (Stuttg) 2005; 7(6): 640-649
DOI: 10.1055/s-2005-872902
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Acclimation to Ozone Affects Host/Pathogen Interaction and Competitiveness for Nitrogen in Juvenile Fagus sylvatica and Picea abies Trees Infected with Phytophthora citricola

G. Luedemann1 , R. Matyssek1 , F. Fleischmann2 , T. E. E. Grams1
  • 1Department of Ecology, Ecophysiology of Plants, Technische Universität München, 85354 Freising-Weihenstephan, Germany
  • 2Department of Ecology, Pathology of Woody Plants, Technische Universität München, 85354 Freising-Weihenstephan, Germany
Weitere Informationen

Publikationsverlauf

Received: May 13, 2005

Accepted: September 5, 2005

Publikationsdatum:
02. Januar 2006 (online)

Abstract

In a two-year phytotron study, juvenile trees of European beech (Fagus sylvatica) and Norway spruce (Picea abies) were grown in mixture under ambient and twice ambient ozone (O3) and infected with the root pathogen Phytophthora citricola. We investigated the influence of O3 on the trees' susceptibility to the root pathogen and assessed, through a 15N-labelling experiment, the impact of both treatments (O3 exposure and infection) on belowground competitiveness. The hypotheses tested were that: (1) both P. citricola and O3 reduce the belowground competitiveness (in view of N acquisition), and (2) that susceptibility to P. citricola infection is reduced through acclimation to enhanced O3 exposure. Belowground competitiveness was quantified via cost/benefit relationships, i.e., the ratio of structural investment in roots relative to their uptake of 15N. Beech had a lower biomass acquisition and captured less 15N under enhanced O3 and P. citricola infection alone than spruce, whereas the latter species appeared to profit from the lower resource acquisition of beech in these treatments. Nevertheless, in the combined treatment, susceptibility to P. citricola of spruce was increased, while beech growth and 15N uptake were not further reduced below the levels found under the single treatments. Potential trade-offs between stress defence, growth performance, and associated nitrogen status are discussed for trees affected through O3 and/or pathogen infection. With respect to growth performance, it is concluded that O3 enhances susceptibility to the pathogen in spruce, but apparently raises the defence capacity in beech.

References

  • 1 Andersen C. P.. Source-sink balance and carbon allocation below ground in plants exposed to ozone.  New Phytologist. (2003);  157 213-228
  • 2 Ashmore M. R.. Assessing the future global impacts of ozone on vegetation.  Plant, Cell and Environment. (2005);  28 949-964
  • 3 Bergmann W.. Ernährungsstörungen bei Kulturpflanzen. Jena; Gustav Fischer (1993): 1-835
  • 4 Böhm J., Hahn A., Schubert R., Bahnweg G., Adler N., Nechwatal J., Oehlmann R., Oßwald W.. Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants.  Journal of Phytopathology. (1999);  147 409-416
  • 5 Cahill D. M., McComb J. A.. A comparison of changes in phenylalanine ammonia-lyase activity, lignin and phenolic synthesis in the roots of Eucalyptus calophylla (field resistant) and E. marginata (susceptible) when infected with Phytophthora cinnamomi. .  Physiological and Molecular Plant Pathology. (1992);  40 315-332
  • 6 Cooke D. E. L., Drenth A., Duncan J. M., Wagels G., Brasier C. M.. A molecular phylogeny of Phytophthora and related oomycetes.  Fungal Genetics and Biology. (2000);  30 17-32
  • 7 Dietrich R., Ploss K., Heil M.. Constitutive and induced resistance to pathogens in Arabidopsis thaliana depends on nitrogen supply.  Plant, Cell and Environment. (2004);  27 896-906
  • 8 Dietrich R., Ploss K., Heil M.. Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions.  Plant, Cell and Environment. (2005);  28 211-222
  • 9 Erwin D. C., Ribeiro O. K.. Phytophthora Diseases Worldwide. St. Paul; The American Phytopathological Society (1996): 1-592
  • 10 Fabian P.. Leben im Treibhaus. Unser Klimasystem - und was wir daraus machen. Berlin; Springer-Verlag (2002): 1-258
  • 11 Fleischmann F., Schneider D., Matyssek R., Oßwald W. F.. Investigations on net CO2 assimilation, transpiration and root growth of Fagus sylvatica infested with four different Phytophthora species.  Plant Biology. (2002);  4 144-152
  • 12 Fleischmann F., Göttlein A., Rodenkirchen H., Lutz C., Oßwald W.. Biomass, nutrient and pigment content of beech (Fagus sylvatica) saplings infected with Phytophthora citricola, P. cambivora, P. pseudosyringae and P. undulata. .  Forest Pathology. (2004);  34 79-92
  • 13 Fowler D., Cape J. N., Coyle M., Smith R. I., Hjellbrekke A. G., Simpson D., Derwent R. G., Johnson C. E.. Modelling photochemical oxidant formation, transport, deposition and exposure of terrestrial ecosystems.  Environmental Pollution. (1999);  100 43-55
  • 14 Fuhrer J., Achermann B.. Critical Levels for Ozone - Level II. Environmental Documentation No. 115 Air. Workshop under the Convention on Long-Range Transboundary Air Pollution of the United Nations Economic Commission for Europe (UNECE). Gerzensee; Swiss Agency for the Environment, Forests and Landscape (SAEFL) (1999): 1-133
  • 15 Gessler A., Kopriva S., Rennenberg H.. Regulation of nitrate uptake at the whole-tree level: interaction between nitrogen compounds, cytokinins and carbon metabolism.  Tree Physiology. (2004);  24 1313-1321
  • 16 Grams T. E. E., Kozovits A. R., Reiter I. M., Winkler J. B., Sommerkorn M., Blaschke H., Haberle K. H., Matyssek R.. Quantifying competitiveness in woody plants.  Plant Biology. (2002);  4 153-158
  • 17 Heagle A. S.. Interactions between air pollutants and plant parasites.  Annual Review of Phytopathology. (1973);  11 365-388
  • 18 Heller W., Rosemann D., Oßwald W. F., Benz B., Schönwitz R., Lohwasser K., Kloss M., Sandermann H.. Biochemical response of Norway spruce (Picea abies [L.] Karst.) towards 14-month exposure to ozone and acid mist. Part I - Effects on polyphenol and monoterpene metabolism.  Environmental Pollution. (1990);  64 353-366
  • 19 Herms D. A., Mattson W. J.. The dilemma of plants - to grow or defend.  Quarterly Review of Biology. (1992);  67 283-335
  • 20 Hoagland D. R., Arnon D. I.. The water-culture method for growing plants without soil.  California Agricultural Experiment Station Circular. (1950);  147 1-32
  • 21 Imo M., Timmer V. R.. Nitrogen uptake of mesquite seedlings at conventional and exponential fertilization schedules.  Soil Science Society of America Journal. (1992);  56 927-934
  • 22 Jung T., Blaschke H.. Phytophthora root rot in declining forest trees.  Phyton - Annales Rei Botanicae. (1996);  36 95-101
  • 23 Jung T., Cooke D. E. L., Blaschke H., Duncan J. M., Oßwald W.. Phytophthora quercina sp nov., causing root rot of European oaks.  Mycological Research. (1999);  103 785-798
  • 24 Karnosky D. F., Percy K. E., Xiang B. X., Callan B., Noormets A., Mankovska B., Hopkin A., Sober J., Jones W., Dickson R. E., Isebrands J. G.. Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp tremuloidae). .  Global Change Biology. (2002);  8 329-338
  • 25 Kozovits A. R., Matyssek R., Blaschke H., Göttlein A., Grams T. E. E.. Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons.  Global Change Biology. (2005 a);  11 1387-1401
  • 26 Kozovits A. R., Matyssek R., Winkler J. B., Göttlein A., Blaschke H., Grams T. E. E.. Above-ground space sequestration determines competitive success in juvenile beech and spruce trees.  New Phytologist. (2005 b);  167 181-196
  • 27 Kreutzer K., Göttlein A., Pröbstle P., Zuleger M.. Höglwaldforschung 1982 - 1989. Zielsetzung, Versuchskonzept, Basisdaten. Kreutzer, K. and Göttlein, A., eds. Ökosystemforschung Höglwald. Forstwissenschaftliche Forschungen. Hamburg, Berlin; Verlag Paul Parey (1991): 11-21
  • 28 Küppers M.. Carbon relations and competition between woody species in a Central European hedgerow. 3. Carbon and water-balance on the leaf level.  Oecologia. (1984);  65 94-100
  • 29 Laurence J. A., Andersen C. P.. Ozone and natural systems: understanding exposure, response, and risk.  Environment International. (2003);  29 155-160
  • 30 Lefohn A. S.. Surface Level Ozone Exposures and Their Effects on Vegetation. Chelsea; Lewis Publishers (1992): 1-366
  • 31 Lippert M., Steiner K., Payer H. D., Simons S., Langebartels C., Sandermann H.. Assessing the impact of ozone on photosynthesis of European beech (Fagus sylvatica L.) in environmental chambers.  Trees - Structure and Function. (1996);  10 268-275
  • 32 Manning W. M., von Tiedemann A.. Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV‐B) radiation on plant diseases.  Environmental Pollution. (1995);  88 219-245
  • 33 Matyssek R., Innes J. L.. Ozone - a risk factor for trees and forests in Europe?.  Water, Air and Soil Pollution. (1999);  116 199-226
  • 34 Matyssek R., Sandermann H.. Impact of ozone on trees: an ecophysiological perspective. Esser, K., Lüttge, U., Beyschlag, W., and Hellwig, F., eds. Progress in Botany. Berlin, Heidelberg; Springer Verlag (2003): 349-404
  • 35 Nechwatal J., Oßwald W.. Comparative studies on the fine root status of healthy and declining spruce and beech trees in the Bavarian Alps and occurrence of Phytophthora and Pythium species.  Forest Pathology. (2001);  31 257-273
  • 36 Nunn A. J., Reiter I. M., Haberle K. H., Werner H., Langebartels C., Sandermann H., Heerdt C., Fabian P., Matyssek R.. “Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech.  Phyton - Annales Rei Botanicae. (2002);  42 105-119
  • 37 Payer H.-D., Blodow P., Köfferlein M., Lippert M., Schmolke W., Seckmeyer G., Seidlitz H., Strube D., Thiel S.. Controlled environment chambers for experimental studies on plant responses to CO2 and interactions with pollutants. Schulze, E.-D. and Mooney, H., eds. Design and Execution of Experiments on CO2 Enrichment. Brussels; Commission European Communities (1993): 127-145
  • 38 Pretzsch H., Dursky J.. Growth reaction of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus silvatica L.) to possible climatic changes in Germany. A sensitivity study.  Forstwissenschaftliches Centralblatt. (2002);  121 145-154
  • 39 Pritsch K., Luedemann G., Matyssek R., Hartmann A., Schloter M., Scherb H., Grams T. E. E.. Mycorrhizosphere responsiveness to atmospheric ozone and inoculation with Phytophthora citricola in a phytotron experiment with spruce/beech mixed cultures.  Plant Biology. (2005);  DOI: 10.1055/s-2005-872972
  • 40 Reiter I. M., Haberle K. H., Nunn A. J., Heerdt C., Reitmayer H., Grote R., Matyssek R.. Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain.  Oecologia. (2005);  146 337-349
  • 41 Samuelson L., Kelly J. M.. Scaling ozone effects from seedlings to forest trees.  New Phytologist. (2001);  149 21-41
  • 42 Sandermann H., Ernst D., Heller W., Langebartels C.. Ozone: an abiotic elicitor of plant defence reactions.  Trends in Plant Science. (1998);  3 47-50
  • 43 Schmitt R., Sandermann H.. Biochemical response of Norway spruce (Picea abies [L.] Karst.) towards 14-month exposure to ozone and acid mist. Part II - Effects on protein biosynthesis.  Environmental Pollution. (1990);  64 367-373
  • 44 Schwinning S.. Decomposition analysis of competitive symmetry and size structure dynamics.  Annals of Botany. (1996);  77 47-57
  • 45 Skärby L., Ro-Poulsen H., Wellburn F. A. M., Sheppard L. J.. Impacts of ozone on forests: a European perspective.  New Phytologist. (1998);  139 109-122
  • 46 Sprugel D. G., Hinckley T. M., Schaap W.. The theory and practice of branch autonomy.  Annual Review of Ecology and Systematics. (1991);  22 309-334
  • 47 Stockwell W. R., Kramm G., Scheel H.-E., Mohnen V. A., Seiler W.. Ozone formation, destruction and exposure in Europe and the United States. Sandermann, H., Wellburn, A. R., and Heath, R. L., eds. Ecological Studies 127, Forest Decline and Ozone. A Comparison of Controlled Chamber and Field Experiments. Berlin, Heidelberg, New York; Springer (1997): 1-38
  • 48 von Tiedemann A., Firsching K. H.. Combined whole-season effects of elevated ozone and carbon dioxide concentrations on a simulated wheat leaf rust (Puccinia recondita f. sp. tritici) epidemic.  Journal of Plant Diseases and Protection. (1998);  105 555-566
  • 49 Werres S.. Influence of the Phytophthora isolate and the seed source on the development of beech (Fagus sylvatica) seedling blight.  European Journal of Forest Pathology. (1995);  25 381-390
  • 50 Wolff B., Riek W.. eutscher Waldbodenbericht 1996 - Ergebnisse der bundesweiten Bodenzustandserhebung in Wald (BZE) 1987 - 1993. Bonn; Bundesministerium für Ernährung, Landwirtschaft und Forsten (BELF) (1999): 1-120
  • 51 Zangerl A. R., Bazzaz F. A.. Theory and pattern in plant defense allocation. Fritz, R. S. and Simms, E. L., eds. Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. Chicago; University of Chicago Press (1992): 363-391
  • 52 Zar J. H.. Biostatistical Analysis. New Jersey; Prentice-Hall (1999): 1-931

G. Luedemann

Department of Ecology
Ecophysiology of Plants
Technische Universität München

Am Hochanger 13

85354 Freising-Weihenstephan

Germany

eMail: gustavo.luedemann@mytum.de

Editor: H. Rennenberg