RSS-Feed abonnieren
DOI: 10.1055/s-2005-917106
Total Synthesis of Sperabillin A and C
Publikationsverlauf
Publikationsdatum:
05. Oktober 2005 (online)

Abstract
The first total synthesis of sperabillin A and an improved total synthesis of sperabillin C have been achieved in 11 steps from N-Boc-O-methyl-l-tyrosine. The stereoselective pathway to the core (3R,5R)-3,6-diamino-5-hydroxyhexanoic acid involves an Arndt-Eistert homologation, an asymmetric Henry reaction and a ruthenium tetroxide-catalyzed oxidative degradation of a benzene ring as key steps.
Key words
sperabillins - antibiotics - pseudo-peptides - Henry reaction - ruthenium tetroxide
- 1
Hamada M.Takeuchi T.Kondo S.Ikeda Y.Naganawa H.Maeda K.Okami Y.Umezawa H. J. Antibiot. 1970, 23: 170 -
2a
Harada S, andOno H. inventors; Eur. Pat. Appl.; EP206068. -
2b
Katayama N.Nozaki Y.Tsubotani S.Kondo M.Harada S.Ono H. J. Antibiot. 1992, 45: 10 -
2c
Hida T.Tsubotani S.Funabashi Y.Ono H.Harada S. Bull. Chem. Soc. Jpn. 1993, 66: 863 - For some recent examples see:
-
3a
Raju B.Mortell K.Anandan S.O’Dowd H.Gao H.Gomez M.Hackbarth C.Wu C.Wang W.Yuan Z.White R.Trias J.Patel DV. Bioorg. Med. Chem. Lett. 2003, 13: 2413 -
3b
Jain RP.Williams RM. J. Org. Chem. 2002, 67: 6361 -
3c
Davies SG.Ichihara O. Tetrahedron: Asymmetry 1996, 7: 1919 - 4
Hashiguchi S.Kawada A.Natsugari H. Synthesis 1992, 403 - Highly efficient asymmetric total syntheses of sperabillin B (3b) and D (3d) have been reported recently, see:
-
5a
Davies SG.Kelly RJ.Price Mortimer AJ. Chem. Commun. 2003, 2132 -
5b
Davies SG.Haggitt JR.Ichihara O.Kelly RJ.Leech MA.Price Mortimer AJ.Roberts PM.Smith AD. Org. Biomol. Chem. 2004, 2: 2630 -
5c For a previous chiral-pool synthesis of sperabillin D (3d) see:
Hashiguchi S.Kawada A.Natsugari H. J. Chem. Soc., Perkin Trans. 1 1991, 2435 - 6
Chen HG.Tustin JM.Wuts PGM.Sawyer TK.Smith CW. Int. J. Pept. Protein Res. 1995, 45: 1 - 7
Jackson RFW.Dexter CS. J. Org. Chem. 1999, 64: 7579 -
8a
Ohtake N.Okamoto O.Mitomo R.Kato Y.Yamamoto K.Haga Y.Fukatsu H.Nakagawa S. J. Antibiot. 1997, 50: 598 -
8b
Rudolph J.Hanning F.Theis H.Wischnat R. Org. Lett. 2001, 3: 3153 -
8c
Paintner FF.Allmendinger L.Bauschke G.Klemann P. Org. Lett. 2005, 7: 1423 - 9
Evans DA.Seidel D.Rueping M.Lam HW.Shaw JT.Downey CW. J. Am. Chem. Soc. 2003, 125: 12692 - For recent examples see:
-
11a
Emmer G.Grassberger MA.Meingassner JG.Schulz G.Schaude M. J. Med. Chem. 1994, 37: 1908 -
11b
Matsuura F.Hamada Y.Shioiri T. Tetrahedron 1994, 50: 9457 -
11c
Georgiadis D.Matziari M.Vassiliou S.Dive V.Yiotakis A. Tetrahedron 1999, 55: 14635 -
11d
Walker JR.Curley RW. Tetrahedron 2001, 57: 6695 -
11e
Moutevelis-Minakakis P.Sinanoglou C.Loukas V.Kokotos G. Synthesis 2005, 933 -
11f For a recent review covering the oxidative degradation of benzene rings see:
Mander LN.Williams CM. Tetrahedron 2003, 59: 1105 -
12a
Yoshifuji S.Tanaka K.Nitta Y. Chem. Pharm. Bull. 1985, 33: 1749 -
12b
Tanaka K.Yoshifuji S.Nitta Y. Chem. Pharm. Bull. 1988, 36: 3125 -
13a
In addition to product 10, its N-formyl derivative 3-tert-butoxycarbonylformylamino-5-tert-butyldimethylsilyloxy-6-nitrohexanoic acid (5% yield) and trace amounts (<1%) of 4-tert-butoxycarbonylamino-2-tert-butyldimethyl-silyloxyhexanedioic acid, the latter indicating a Nef-type reaction at the nitromethyl group, were obtained. Application of the reaction conditions [2.2 mol% RuCl, NaIO4 (18 equiv), CCl4-MeCN-H2O = 2:2:3, r.t.] previously developed by Sharpless and co-workers (see ref. 13b) gave the oxidation product 10 in a 41% yield together with 24% of the N-formyl derivative mentioned above.
-
13b
Carlsen PHJ.Katsuki T.Martin VS.Sharpless KB. J. Org. Chem. 1981, 46: 3936 - 16
Rossi R.Carpita A.Quirici MG.Gaudenti ML. Tetrahedron 1982, 38: 631 - 18
Smith AB.Pitram SM.Boldi AM.Gaunt MJ.Sfouggatakis C.Moser WH. J. Am. Chem. Soc. 2003, 125: 14435 -
19a
Barker PL.Gendler PL.Rapoport H. J. Org. Chem. 1981, 46: 2455 -
19b
Josse O.Labar D.Marchand-Brynaert J. Synthesis 1999, 404 - 20 For a previous synthesis of 3-aminopropionamidine, starting from 3-aminopropionitril, see:
Hilgetag G.Paul H.Günther J.Witt M. Chem. Ber. 1964, 97: 704 - 21
Lee HK.Ten LN.Pak CS. Bull. Korean Chem. Soc. 1998, 19: 1148
References
The reaction of chiral aldehyde 6 with nitromethane in the presence of catalyst (+)-11 represents the matched case of double diastereoselection, since application of the enantiomeric catalyst (-)-11 gave the corresponding epimer of 5 with slightly lower stereoselectivity (91% de).
14In the absence of sodium hydrogen carbonate a somewhat lower yield (56%) of product 10 was obtained.
15Spectroscopic data of compound 4: [α]D 20 +20.8 (c 0.95 in CH2Cl2). 1H NMR (500 MHz, MeOH-d 4): δ = 0.13 (3 H, s), 0.15 (3 H, s), 0.92 (9 H, s), 1.43 (9 H, sbr), 1.78 (2 H, m), 2.31 (1 H, dd, J = 14.9, 7.7 Hz), 2.39 (1 H, dd, J = 14.9, 4.7 Hz), 3.01 (1 H, dd, J = 13.0, 4.1 Hz), 3.06 (1 H, dd, J = 13.0, 4.9 Hz), 3.85 (1 H, m), 4.18 (1 H, m), 4.09 (1 H, m). 13C NMR (100 MHz, MeOH-d 4): δ = -5.0, 18.4, 25.9, 28.3, 40.0, 43.5, 45.2, 45.8, 67.7, 79.6, 157.1, 178.6.
17For an alternative stereoselective approach to (2E,4Z)-hexa-2,4-dienoic acid (14), see ref. 5b.
22Spectroscopic data of sperabillin A (3a) [2c] : [α]D 23 -11.4 (c 0.4 in H2O), lit. [2c] [α]D 23 -11 (c 1.1 in H2O). 1H NMR (500 MHz, D2O): δ = 1.77 (1 H, ddd, J = 4.5, 10.0, 15.0 Hz), 1.87 (3 H, d, J = 7.2 Hz), 1.87 (1 H, m), 2.68 (2 H, t, J = 6.6 Hz), 2.74 (2 H, m), 3.33 (1 H, dd, J = 6.6, 14.0 Hz), 3.39 (1 H, dd, J = 4.5, 14.0 Hz), 3.55 (1 H, dt, J = 6.6, 14.0 Hz), 3.59 (1 H, dt, J = 6.7, 14.0 Hz), 3.86 (1 H, m), 4.00 (1 H, m), 6.02 (1 H, dq, J = 7.2, 10.8 Hz), 6.07 (1 H, d, J = 15.1 Hz), 6.23 (1 H, t, J = 10.8 Hz), 7.56 (1 H, dd, J = 11.8, 15.1 Hz). 13C NMR (100 MHz, D2O): δ = 16.0, 35.3, 38.0, 39.2, 39.8, 47.8, 49.1, 69.1, 125.1, 129.6, 139.4, 139.5, 171.7, 172.4, 174.7.
23Spectroscopic data of sperabillin C (3c) [2c] : [α]D 23 -10.2 (c 0.4 in H2O), lit. [2c] [α]D 20 -11 (c 0.7 in H2O). 1H NMR (500 MHz, D2O): δ = 1.75 (1 H, ddd, J = 4.7, 10.0, 15.0 Hz), 1.83 (3 H, d, J = 5.5 Hz), 1.87 (1 H, ddd, J = 3.1, 7.5, 15.0 Hz), 2.67 (2 H, t, J = 6.7 Hz), 2.73 (2 H, d, J = 7.0 Hz), 3.30 (1 H, dd, J = 6.5, 14.0 Hz), 3.37 (1 H, dd, J = 4.7, 14.0 Hz), 3.57 (2 H, m), 3.85 (1 H, m), 3.98 (1 H, m), 5.97 (1 H, d, J = 15.5 Hz), 6.26 (2 H, m), 7.13 (1 H, dd, J = 9.7, 15.5 Hz). 13C NMR (100 MHz, D2O): δ = 20.7, 35.3, 38.0, 39.2, 39.8, 47.8, 49.1, 69.1, 122.9, 132.0, 143.2, 145.4, 171.6, 172.5, 174.7.