References
1
Hamada M.
Takeuchi T.
Kondo S.
Ikeda Y.
Naganawa H.
Maeda K.
Okami Y.
Umezawa H.
J. Antibiot.
1970,
23:
170
2a Harada S, and Ono H. inventors; Eur. Pat. Appl.; EP206068.
2b
Katayama N.
Nozaki Y.
Tsubotani S.
Kondo M.
Harada S.
Ono H.
J. Antibiot.
1992,
45:
10
2c
Hida T.
Tsubotani S.
Funabashi Y.
Ono H.
Harada S.
Bull. Chem. Soc. Jpn.
1993,
66:
863
For some recent examples see:
3a
Raju B.
Mortell K.
Anandan S.
O’Dowd H.
Gao H.
Gomez M.
Hackbarth C.
Wu C.
Wang W.
Yuan Z.
White R.
Trias J.
Patel DV.
Bioorg. Med. Chem. Lett.
2003,
13:
2413
3b
Jain RP.
Williams RM.
J. Org. Chem.
2002,
67:
6361
3c
Davies SG.
Ichihara O.
Tetrahedron: Asymmetry
1996,
7:
1919
4
Hashiguchi S.
Kawada A.
Natsugari H.
Synthesis
1992,
403
Highly efficient asymmetric total syntheses of sperabillin B (3b) and D (3d) have been reported recently, see:
5a
Davies SG.
Kelly RJ.
Price Mortimer AJ.
Chem. Commun.
2003,
2132
5b
Davies SG.
Haggitt JR.
Ichihara O.
Kelly RJ.
Leech MA.
Price Mortimer AJ.
Roberts PM.
Smith AD.
Org. Biomol. Chem.
2004,
2:
2630
5c For a previous chiral-pool synthesis of sperabillin D (3d) see: Hashiguchi S.
Kawada A.
Natsugari H.
J. Chem. Soc., Perkin Trans. 1
1991,
2435
6
Chen HG.
Tustin JM.
Wuts PGM.
Sawyer TK.
Smith CW.
Int. J. Pept. Protein Res.
1995,
45:
1
7
Jackson RFW.
Dexter CS.
J. Org. Chem.
1999,
64:
7579
8a
Ohtake N.
Okamoto O.
Mitomo R.
Kato Y.
Yamamoto K.
Haga Y.
Fukatsu H.
Nakagawa S.
J. Antibiot.
1997,
50:
598
8b
Rudolph J.
Hanning F.
Theis H.
Wischnat R.
Org. Lett.
2001,
3:
3153
8c
Paintner FF.
Allmendinger L.
Bauschke G.
Klemann P.
Org. Lett.
2005,
7:
1423
9
Evans DA.
Seidel D.
Rueping M.
Lam HW.
Shaw JT.
Downey CW.
J. Am. Chem. Soc.
2003,
125:
12692
10 The reaction of chiral aldehyde 6 with nitromethane in the presence of catalyst (+)-11 represents the matched case of double diastereoselection, since application of the enantiomeric catalyst (-)-11 gave the corresponding epimer of 5 with slightly lower stereoselectivity (91% de).
For recent examples see:
11a
Emmer G.
Grassberger MA.
Meingassner JG.
Schulz G.
Schaude M.
J. Med. Chem.
1994,
37:
1908
11b
Matsuura F.
Hamada Y.
Shioiri T.
Tetrahedron
1994,
50:
9457
11c
Georgiadis D.
Matziari M.
Vassiliou S.
Dive V.
Yiotakis A.
Tetrahedron
1999,
55:
14635
11d
Walker JR.
Curley RW.
Tetrahedron
2001,
57:
6695
11e
Moutevelis-Minakakis P.
Sinanoglou C.
Loukas V.
Kokotos G.
Synthesis
2005,
933
11f For a recent review covering the oxidative degradation of benzene rings see: Mander LN.
Williams CM.
Tetrahedron
2003,
59:
1105
12a
Yoshifuji S.
Tanaka K.
Nitta Y.
Chem. Pharm. Bull.
1985,
33:
1749
12b
Tanaka K.
Yoshifuji S.
Nitta Y.
Chem. Pharm. Bull.
1988,
36:
3125
13a In addition to product 10, its N-formyl derivative 3-tert-butoxycarbonylformylamino-5-tert-butyldimethylsilyloxy-6-nitrohexanoic acid (5% yield) and trace amounts (<1%) of 4-tert-butoxycarbonylamino-2-tert-butyldimethyl-silyloxyhexanedioic acid, the latter indicating a Nef-type reaction at the nitromethyl group, were obtained. Application of the reaction conditions [2.2 mol% RuCl, NaIO4 (18 equiv), CCl4-MeCN-H2O = 2:2:3, r.t.] previously developed by Sharpless and co-workers (see ref. 13b) gave the oxidation product 10 in a 41% yield together with 24% of the N-formyl derivative mentioned above.
13b
Carlsen PHJ.
Katsuki T.
Martin VS.
Sharpless KB.
J. Org. Chem.
1981,
46:
3936
14 In the absence of sodium hydrogen carbonate a somewhat lower yield (56%) of product 10 was obtained.
15 Spectroscopic data of compound 4: [α]D
20 +20.8 (c 0.95 in CH2Cl2). 1H NMR (500 MHz, MeOH-d
4): δ = 0.13 (3 H, s), 0.15 (3 H, s), 0.92 (9 H, s), 1.43 (9 H, sbr), 1.78 (2 H, m), 2.31 (1 H, dd, J = 14.9, 7.7 Hz), 2.39 (1 H, dd, J = 14.9, 4.7 Hz), 3.01 (1 H, dd, J = 13.0, 4.1 Hz), 3.06 (1 H, dd, J = 13.0, 4.9 Hz), 3.85 (1 H, m), 4.18 (1 H, m), 4.09 (1 H, m). 13C NMR (100 MHz, MeOH-d
4): δ = -5.0, 18.4, 25.9, 28.3, 40.0, 43.5, 45.2, 45.8, 67.7, 79.6, 157.1, 178.6.
16
Rossi R.
Carpita A.
Quirici MG.
Gaudenti ML.
Tetrahedron
1982,
38:
631
17 For an alternative stereoselective approach to (2E,4Z)-hexa-2,4-dienoic acid (14), see ref. 5b.
18
Smith AB.
Pitram SM.
Boldi AM.
Gaunt MJ.
Sfouggatakis C.
Moser WH.
J. Am. Chem. Soc.
2003,
125:
14435
19a
Barker PL.
Gendler PL.
Rapoport H.
J. Org. Chem.
1981,
46:
2455
19b
Josse O.
Labar D.
Marchand-Brynaert J.
Synthesis
1999,
404
20 For a previous synthesis of 3-aminopropionamidine, starting from 3-aminopropionitril, see: Hilgetag G.
Paul H.
Günther J.
Witt M.
Chem. Ber.
1964,
97:
704
21
Lee HK.
Ten LN.
Pak CS.
Bull. Korean Chem. Soc.
1998,
19:
1148
22 Spectroscopic data of sperabillin A (3a)
[2c]
: [α]D
23 -11.4 (c 0.4 in H2O), lit.
[2c]
[α]D
23 -11 (c 1.1 in H2O). 1H NMR (500 MHz, D2O): δ = 1.77 (1 H, ddd, J = 4.5, 10.0, 15.0 Hz), 1.87 (3 H, d, J = 7.2 Hz), 1.87 (1 H, m), 2.68 (2 H, t, J = 6.6 Hz), 2.74 (2 H, m), 3.33 (1 H, dd, J = 6.6, 14.0 Hz), 3.39 (1 H, dd, J = 4.5, 14.0 Hz), 3.55 (1 H, dt, J = 6.6, 14.0 Hz), 3.59 (1 H, dt, J = 6.7, 14.0 Hz), 3.86 (1 H, m), 4.00 (1 H, m), 6.02 (1 H, dq, J = 7.2, 10.8 Hz), 6.07 (1 H, d, J = 15.1 Hz), 6.23 (1 H, t, J = 10.8 Hz), 7.56 (1 H, dd, J = 11.8, 15.1 Hz). 13C NMR (100 MHz, D2O): δ = 16.0, 35.3, 38.0, 39.2, 39.8, 47.8, 49.1, 69.1, 125.1, 129.6, 139.4, 139.5, 171.7, 172.4, 174.7.
23 Spectroscopic data of sperabillin C (3c)
[2c]
: [α]D
23 -10.2 (c 0.4 in H2O), lit.
[2c]
[α]D
20 -11 (c 0.7 in H2O). 1H NMR (500 MHz, D2O): δ = 1.75 (1 H, ddd, J = 4.7, 10.0, 15.0 Hz), 1.83 (3 H, d, J = 5.5 Hz), 1.87 (1 H, ddd, J = 3.1, 7.5, 15.0 Hz), 2.67 (2 H, t, J = 6.7 Hz), 2.73 (2 H, d, J = 7.0 Hz), 3.30 (1 H, dd, J = 6.5, 14.0 Hz), 3.37 (1 H, dd, J = 4.7, 14.0 Hz), 3.57 (2 H, m), 3.85 (1 H, m), 3.98 (1 H, m), 5.97 (1 H, d, J = 15.5 Hz), 6.26 (2 H, m), 7.13 (1 H, dd, J = 9.7, 15.5 Hz). 13C NMR (100 MHz, D2O): δ = 20.7, 35.3, 38.0, 39.2, 39.8, 47.8, 49.1, 69.1, 122.9, 132.0, 143.2, 145.4, 171.6, 172.5, 174.7.