References
Reviews:
1a
Omura S.
Tanaka H. In Macrolide Antibiotics: Chemistry, Biology and Practice
Omura S.
Academic Press Inc.;
New York:
1984.
p.351
1b
Beau JM. In Recent Progress in the Chemical Synthesis of Antibiotics
Lukacs G.
Ohno M.
Springer Verlag;
Berlin:
1990.
p.132
1c
Rychnovsky SD.
Chem. Rev.
1995,
95:
2021
1d
Schneider C. In Organic Synthesis Highlights IV
Schmalz H.-G.
Wiley-VCH;
Weinheim:
2000.
p.58
Leading references:
2a RK-397: Denmark SE.
Fujimori S.
J. Am. Chem. Soc.
2005,
127:
8971
2b Nystatin, candidin polyol parts: Kadota I.
Hu Y.
Packard GK.
Rychnovsky SD.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
11992
2c RK-397: Burova SA.
McDonald FE.
J. Am. Chem. Soc.
2004,
126:
2495
2d Roxaticin: Evans DA.
Connell BT.
J. Am. Chem. Soc.
2003,
125:
10899
2e RK-397 polyol part: Schneider C.
Tolksdorf V.
Rehfeuter M.
Synlett
2002,
2098
2f Dermostatin A: Sinz CJ.
Rychnovsky SD.
Tetrahedron
2002,
58:
6561
2g Roxaticin polyol part: Paterson I.
Collett LA.
Tetrahedron Lett.
2001,
42:
1187
2h Mycoticin A: Dreher SD.
Leighton JL.
J. Am. Chem. Soc.
2001,
123:
341
See, for example:
3a
Evans DA.
Fitch DM.
Smith TE.
Cee VJ.
J. Am. Chem. Soc.
2000,
122:
10033
3b
Paterson I.
Florence GJ.
Gerlach K.
Scott JP.
Sereinig N.
J. Am. Chem. Soc.
2001,
123:
9535
4 ‘Complex Mukaiyama aldol addition’ giving an unbranched dihydroxyaldol: Rychnovsky SD.
Crossrow J.
Org. Lett.
2003,
5:
2367
See, for example:
5a
Lipshutz BH.
Moretti R.
Crow R.
Tetrahedron Lett.
1989,
30:
15
5b
Mori Y.
Kohchi Y.
Suzuki M.
J. Org. Chem.
1991,
56:
631
5c
Evans DA.
Gauchet-Prunet JA.
Carreira EM.
Charette AB.
J. Org. Chem.
1991,
56:
741
5d
Wang Z.
Deschênes D.
J. Am. Chem. Soc.
1992,
114:
1090
5e
Menges M.
Brückner R.
Liebigs Ann.
1995,
365
5f
Allerheiligen S.
Brückner R.
Liebigs Ann./Recl.
1997,
1667
Reviews:
6a
Lohray BB.
Tetrahedron: Asymmetry
1992,
3:
1317
6b
Johnson RA.
Sharpless KB.
Asymmetric Catalysis in Organic Synthesis
Ojima I.
VCH;
New York:
1993.
p.227
6c
Kolb HC.
VanNieuwenhze MS.
Sharpless KB.
Chem. Rev.
1994,
94:
2483
6d
Poli G.
Scolastico C.
Methoden der organischen Chemie (Houben-Weyl)
4th ed., Vol. E21e:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.4547
6e
Salvadori P.
Pini D.
Petri A.
Synlett
1999,
1181
6f
Johnson RA.
Sharpless KB. In
Catalytic Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley-VCH;
New York:
2000.
p.357
6g
Bolm C.
Hildebrand JP.
Muniz K. In
Catalytic Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley-VCH;
New York:
2000.
p.399
7
Blundell P.
Ganguly AK.
Girijavallabhan VM.
Synlett
1994,
263
8
Sharpless KB.
Amberg W.
Bennani YL.
Crispino GA.
Hartung J.
Jeong KS.
Kwong HL.
Morikawa K.
Wang ZM.
Xu D.
Zhang X.-L.
J. Org. Chem.
1992,
57:
2768
9 Compounds αS,βR-10a-g, αR,βS-10a-g, 11a-g, αR,βS-12c, 13, 15, 17, 18, syn-21, and anti-21 provided correct 1H NMR spectra and combustion analyses. Compounds αS,βR-12a-g except c were too volatile for combustion analysis and intermediates 14, 16, and 19 deemed not worth it; these compounds were characterized by 1H NMR and low-resolution mass spectra only.
10
(3
S
,4
R
)-3,4-Dihydroxy-2-octanone (α
S
,β
R
-10a).
At 0 °C, trans-3-octen-2-one (1.20 g, 1.38 mL, 9.51 mmol) was added to a stirred mixture of K2OsO2(OH)4 (35.0 mg, 0.095 mmol, 1.0 mol%), (DHQD)2PHAL (370.0 mg, 0.475 mmol, 5.0 mol%), NaHCO3 (2.40 g, 28.5 mmol, 3.0 equiv), K2CO3 (3.95 g, 28.5 mmol, 3.0 equiv), MeSO2NH2 (903 mg, 9.51 mmol, 1 equiv), and K3Fe(CN)6 (9.39 g, 28.5 mmol, 3.0 equiv) in t-BuOH (25 mL) and H2O (25 mL). After stirring for 60 h sat. aq Na2SO3 (120 mL) was added. The mixture was warmed to r.t. and extracted with EtOAc (3 × 70 mL). The combined organic extracts were washed with brine (60 mL) and dried over MgSO4. Removal of the solvent in vacuo and purification of the residue by flash chromatography on silica gel
[11]
(column filling 5 cm × 20 cm, cyclohexane-EtOAc 1:2, 60 mL fractions) provided the title compound (fractions 5-8, 1.39 g, 89%) as a colorless oil. The ee was ³99% according to chiral GC {CP-Chirasil-Dex CB 25 m × 0.25 mm catalog number CP7502; from 60 °C/10 min at 5 °C/min to 170 °C/20 min; 80 kPa, t
R (major enantiomer) = 26.46 min; no compound eluted around t
R = 25.71 min [which was the independently measured value of t
R (minor enantiomer)]}. 1H NMR (500 MHz, TMS internal standard in CDCl3): δ = 0.93 (t, J
8,7 = 7.1 Hz, 8-H3), 1.34-1.42 (m, 7-H2, 6-H1), 1.44-1.50 (m, 6-H2), 1.66 (mc, presumably interpretable as ddd, J
5,4 = J
5,6-H
(
1) = J
5,6-H
(
2) = 6.9 Hz, 5-H2), superimposed partly by 1.73 (br s, 4-OH), 2.28 (s, 1-H3), 3.70 (br s, 3-OH), 3.95 (td, J
4,5 = 6.9 Hz, J
4,3 = 1.4 Hz, 4-H), 4.08 (d, J
3,4 = 1.5 Hz, 3-H). [α]D
20 +94.6 (c 0.45, CHCl3). IR (CDCl3): 3575, 3465, 2960, 2935, 2875, 2860, 1715, 1465, 1460, 1385, 1360, 1235, 1130, 1090, 935, 910, 885 cm-1. Anal. Calcd for C8H16O3 (160.2): C, 59.97; H, 10.07. Found: C, 59.68; H, 10.09.
11
Still WC.
Kahn M.
Mitra A.
J. Org. Chem.
1978,
43:
2923
Enantioselective AD of achiral α,β-unsaturated ketones:
12a
Becker H.
Soler MA.
Sharpless KB.
Tetrahedron
1995,
51:
1345
12b
Takikawa H.
Shimbo K.-i.
Mori K.
Liebigs Ann./Recl.
1997,
821
12c
Yokoyama Y.
Mori K.
Liebigs Ann./Recl.
1997,
849
12d
List B.
Shabat D.
Barbas CF.
Lerner RA.
Chem.-Eur. J.
1998,
4:
881
12e
Giner J.-L.
Tetrahedron Lett.
1998,
39:
2479
12f
Shabat D.
List B.
Lerner RA.
Barbas CF.
Tetrahedron Lett.
1999,
40:
1437
12g
Toshima H.
Aramaki H.
Ichihara A.
Tetrahedron Lett.
1999,
40:
3587
12h
Schuricht U.
Endler K.
Hennig L.
Findeisen M.
Welzel P.
J. Prakt. Chem.
2000,
342:
761
12i
Rieder C.
Jaun B.
Arigoni D.
Helv. Chim. Acta
2000,
83:
2504
12j
Naoki Y.
Suzuki T.
Shibasaki M.
J. Org. Chem.
2002,
67:
2556
12k
Cox RJ.
de Andres-Gomez A.
Godfrey CRA.
Org. Biomol. Chem.
2003,
1:
3173
12l
Kumar DN.
Rao BV.
Tetrahedron Lett.
2004,
45:
2227
Diastereoselective AD of γ-chiral α,β-unsaturated ketones:
13a
Carreira EJ.
DuBois J.
J. Am. Chem. Soc.
1995,
117:
8106
13b
Cid MB.
Pattenden G.
Synlett
1998,
540
13c
Ishiyama H.
Takemura T.
Tsuda M.
Kobayashi J.-i.
J. Chem. Soc., Perkin Trans. 1
1999,
1163
13d
Ohi K.
Nishiyama S.
Synlett
1999,
573
13e
Lee D.-H.
Rho M.-D.
Tetrahedron Lett.
2000,
41:
2573
14 Diastereoselective AD of δ- and β′-chiral α,β-unsaturated ketones: Nicolaou KC.
Li Y.
Sugita K.
Monenschein H.
Guntupalli P.
Mitchell HJ.
Fylaktakidou KC.
Vourloulis D.
Giannakakou P.
O’Brate A.
J. Am. Chem. Soc.
2003,
125:
15443
Diastereoselective AD of β′-chiral α,β-unsaturated ketones:
15a
Schuppan J.
Ziemer B.
Koert U.
Tetrahedron Lett.
2000,
41:
621
15b
Trost BM.
Harrington PE.
J. Am. Chem. Soc.
2004,
126:
5028
15c
Trost BM.
Wrobelski ST.
Chisholm JD.
Harrington PE.
Jung M.
J. Am. Chem. Soc.
2005,
127:
13589
16 Review: Kagan HB.
Tetrahedron
2003,
59:
10351
17 Confer ref. 18a for a different rationalization.
18a
Molander GH.
Hahn G.
J. Org. Chem.
1986,
51:
1135
18b Similarly an Oα-SiMe2
t-Bu bond was cleaved off a ketone by: Abad A.
Agulló C.
Arnó M.
Cuñat AC.
García MT.
Zaragozá RJ.
J. Org. Chem.
1996,
61:
5916
19a
Mori Y.
Yaegashi K.
Furukawa H.
J. Am. Chem. Soc.
1997,
119:
4557
19b
Mori Y.
Yaegashi K.
Furukawa H.
J. Org. Chem.
1998,
63:
6200
19c
Voight EA.
Seradj H.
Roethle P.
Burke SD.
Org. Lett.
2004,
6:
4045
20 In lactones, oxygen-containing α-substituents including OH groups can be removed by SmI2 in THF-HMPA, too: Hanessian S.
Girard C.
Chiara JL.
Tetrahedron Lett.
1992,
33:
573
21
Holton RA.
Somoza C.
Chai K.-B.
Tetrahedron Lett.
1994,
35:
1665
22a
Py S.
Khuong-Huu F.
Tetrahedron Lett.
1995,
36:
1661
22b
Georg GI.
Cheruvallath ZS.
Vander Velde DG.
Himes RH.
Tetrahedron Lett.
1995,
36:
1783
22c
Georg GI.
Harriman GCB.
Datta A.
Ali S.
Cheruvallath ZS.
Vander Velde DG.
Himes RH.
J. Org. Chem.
1998,
63:
8926
23
Molander GH.
Hahn G.
J. Org. Chem.
1986,
51:
2596
24
White DJ.
Nolen EG.
Miller CH.
J. Org. Chem.
1986,
51:
1150
25a
Smith AB.
Dunlap NK.
Sulikowski GA.
Tetrahedron Lett.
1988,
29:
439
25b
Kim D.
Min J.
Ahn SK.
Lee HW.
Choi NS.
Moon SK.
Chem. Pharm. Bull.
2004,
52:
447
26
Hosaka M.
Hayakawa H.
Miyashita M.
J. Chem. Soc., Perkin Trans. 1
2000,
4227
27
Rho H.-S.
Synth. Commun.
1997,
27:
3887
28a
(4
R
)-4-Hydroxy-2-octanone (
11a).
At -78 °C a solution of SmI2 (0.1 M in THF, 42 mL, 4.2 mmol, 2.1 equiv) was added dropwise to a stirred solution of acetonide αS,βR-12a (0.40 g, 2.0 mmol) in THF (12 mL) and MeOH (6 mL). After 15 min the reaction mixture was gradually warmed to r.t. (within 30 min) and aq HCl (1 M, 4.2 mL) was added. After evaporating volatile material in vacuo the residue was diluted with H2O (10 mL) and extracted with t-BuOMe (3 × 15 mL). The combined organic extracts were washed with sat. aq NaHCO3 (10 mL) and brine (8 mL) and dried over MgSO4. Removal of the solvent in vacuo and purification of the residue by flash chromatography on silica gel
[11]
(column filling 1.5 cm × 15 cm, cyclohexane-EtOAc 4:1, 4 mL fractions) afforded the title compound (fractions 20-39, 0.186 g, 65%) as a colorless oil. 1H NMR (400 MHz, MHz, TMS internal standard in CDCl3): δ = 0.91 (t, J
8,7 = 7.1 Hz, 8-H3), 1.29-1.54 (m, 5-H2, 6-H2, 7-H2), 2.18 (s, 1-H3), AB signal (δA = 2.53, δB = 2.62, J
AB = 17.7 Hz, A part in addition split by J
A,4 = 9.0 Hz, B part in addition split by J
B,4 = 2.9 Hz, 3-H2), 2.94 (br s, 4-OH), 4.03 (mc, 4-H). [α]D
20 -31.50 (c 0.20, CHCl3). IR (CDCl3): δ = 3565, 2960, 2935, 2875, 2860, 1705, 1470, 1460, 1415, 1385, 1365, 1315, 1275, 1165, 1060 cm-1. Anal. Calcd for C8H16O2 (144.2): C, 66.63; H, 11.18. Found: C, 66.74; H, 10.97.
28b Enantiomer S-11a was prepared by an organocatalytic aldol addition (86% ee, 12% yield). See: Tang Z.
Jiang F.
Yu L.-T.
Cui X.
Gong L.-Z.
Mi A.-Q.
Jiang Y.-Z.
Wu Y.-D.
J. Am. Chem. Soc.
2003,
125:
5262
Borinylated β-hydroxyketone and NaBH4:
29a
Narasaka K.
Pai F.-C.
Chem. Lett.
1980,
1415
29b
Narasaka K.
Pai
F.-C.
Tetrahedron
1984,
40:
2233
29c
Chen K.-M.
Hardtmann GE.
Prasad K.
Repic O.
Shapiro MJ.
Tetrahedron Lett.
1987,
28:
155
29d
Chen K.-M.
Gunderson KG.
Hardtmann GE.
Prasad K.
Repic O.
Shapiro MJ.
Chem. Lett.
1987,
1923
30 BCl3-complexed β-hydroxyketone and tetraalkylammonium boronate: Sarko CS.
Collibee SE.
Knorr AR.
DiMare M.
J. Org. Chem.
1996,
61:
868
31 Reduction with DIBAL-H: Kiyooka S.
Kuroda H.
Shimasaki Y.
Tetrahedron Lett.
1986,
27:
3009
32 Reduction with catecholborane: Evans DA.
Hoveyda AH.
J. Org. Chem.
1990,
55:
5190
33a Reduction with Zn(BH4)2: Kashihara H.
Suemune H.
Fujimoto K.
Sakai K.
Chem. Pharm. Bull.
1989,
37:
2610 ; in Et2O
33b
Dakin LA.
Panek JS.
Org. Lett.
2003,
5:
3995 ; in CH2Cl2
Reduction with tetraalkylammonium triacetoxyboro-hydride:
34a
Evans DA.
Chapman KT.
Tetrahedron Lett.
1986,
27:
5939
34b
Evans DA.
Chapman KT.
Carreira EM.
J. Am. Chem. Soc.
1988,
110:
3560
34c See also with sodium triacetoxyborohydride: Roeyeke Y.
Keller M.
Kluge H.
Grabley S.
Hammann P.
Tetrahedron
1991,
47:
3335
Intramolecular hydrosilylation:
35a
Anwar S.
Davis AP.
J. Chem. Soc., Chem. Commun.
1986,
831
35b
Anwar S.
Davis AP.
Tetrahedron
1988,
44:
3761
36a Reduction with SmI2 and an aldehyde: Evans DA.
Hoveyda AH.
J. Am. Chem. Soc.
1990,
112:
6447
Related Tishchenko reductions:
36b
Schneider C.
Klapa K.
Hansch M.
Synlett
2005,
91 and literature cited therein
37 LiClO4-complexed β-hydroxyketone and amine-complexed BH3: Narayana C.
Reddy MR.
Hair M.
Kabalka GW.
Tetrahedron Lett.
1997,
38:
7705
38a Reduction with SmI2: Keck GE.
Wager CA.
Sell T.
Wager TT.
J. Org. Chem.
1999,
64:
2172
38b The diastereoselectivity of this reduction is sensitive to solvent variation: Chopade PR.
Davis TA.
Prasad E.
Flowers RA.
Org. Lett.
2004,
6:
2685
39 LiI-complexed β-hydroxyketone and LiAlH(Ot-Bu)3: Ball M.
Baron A.
Bradshaw B.
Omori H.
MacCormick S.
Thomas EJ.
Tetrahedron Lett.
2004,
45:
8737
40
Methyl (6
R
)-7-[(4
R
)-2,2-Dimethyl-1,3-dioxolan-4-yl]-6-hydroxy-4-oxoheptanoate (
24).
A suspension of 1,2-diiodoethane (2.062 g, 7.316 mmol, 3.0 equiv) and Sm powder 40 mesh (1.155 g, 7.316 mmol, 3.15 equiv) in THF (70 mL) was stirred at r.t. for 2 h. A deep-blue solution of SmI2 was obtained. At -78 °C acetonide 25 (805 mg, 2.44 mmol) in THF-MeOH 2:1 (30 mL) was added within 10 min. After another 10 min, the mixture was warmed to r.t. and the reaction quenched 20 min later by the addition of aq HCl (1 M, 7.4 mL). The aqueous phase was separated and extracted with t-BuOMe (3 × 25 mL). The combined organic phases were washed successively with sat. aq NaHCO3 (15 mL) and brine (12 mL) and dried over MgSO4. Removal of the solvent in vacuo and purification of the residue by flash chromatography on silica gel
[11]
(column filling 3 cm × 20 cm, eluent = cyclohexane-EtOAc, 40:60) provided the title compound (fractions 8-24, 601 mg, 90%). 1H NMR (500 MHz, CDCl3): δ = 1.36 and 1.41 [2 × s, 2′-(CH3)2], AB signal (δA = 1.69, δB = 1.73, J
AB = 13.1 Hz, in addition split by J
7-H
(
A),6 = 7.3 Hz,* J
7-H
(
A),4
′ = 4.1 Hz,*
J
7-H
(
B),4
′ = 8.3 Hz,** J
7-H
(
B),6 = 4.9 Hz,** 7-H2), presumably extreme AB signal where the 8 off-center signals are too small to be identified (so that J
AB cannot be extracted) so that the best description is: 2.61 (dd, J
3-H
(
1),2-H
(
1) = 6.6 Hz,
J
3-H
(
1),2-H
(
2) = 3.8 Hz), 2.62 (dd, J
3-H
(
2),2-H
(
2) = 6.6 Hz,***
J
3-H
(
2),2-H
(
1) = 2.7 Hz,*** 3-H2), 2.68 and 2.76 (2 × mc, 2-H2, 5-H2), 3.26 (d, J
OH,6 = 3.5 Hz, 6-OH), 3.57 (dd, J
gem
=
J
5
′
-H
(
1),4
′ = 7.8 Hz, 5′-H1), 3.68 (s, 1-OCH3), 4.09 (dd, J
gem
= 7.9 Hz, J
5
′
-H
(
2), 4
′ = 6.1 Hz, 5′-H2), 4.25-4.33 (m, 6-H, 4′-H); *, **, *** coupling constants exchangeable. 13C NMR [75 MHz, CDCl3; APT spectrum, peak orientation ‘up’ (‘+’) for CH3 and CH and ‘down’ (‘-’) for CH2 and Cquat]: δ = ‘+’ 25.67 and ‘+’ 26.91 [2′-(CH3)2], ‘-’ 27.55 (C-2), ‘-’ 37.80 (C-3), ‘-’ 39.94 (C-7), ‘-’ 49.66 (C-5), ‘+’ 51.88 (1-OCH3), ‘+’ 65.46 (C-6), ‘-’ 69.64 (C-5’), ‘+’ 73.37 (C-4’), ‘-’ 108.75 (C-2’), ‘-’ 173.21 (C-1), ‘-’ 209.34 (C-4). [α]D
20
-22.6 (c 1.92, CHCl3). IR (film): 3490, 3015, 2985, 2945, 1735, 1715, 1435, 1415, 1370, 1215, 1165, 1060, 990, 870, 855 cm-1. Anal. Calcd for C13H22O6 (274.3): C, 56.92; H, 8.08. Found: C, 57.12; H, 7.99.