Subscribe to RSS
DOI: 10.1055/s-2005-922766
Organocatalytic Enantioselective Hydrazination of 1,3-Dicarbonyl Compounds: Asymmetric Synthesis of α,α-Disubstituted α-Amino Acids
Publication History
Publication Date:
16 December 2005 (online)

Abstract
The organocatalytic α-hydrazination of β-keto esters using a bifunctional urea as catalyst and azodicarboxylates as electrophiles has been investigated and is shown to proceed in high yields and with good enantioselectivity. The scope of the reaction is demonstrated for various substrates and the urea catalyst 1b was revealed to be superior to thiourea 1a. Furthermore, transformation of the obtained product 4aa into optically active amino acid derivative 10 is also presented.
Key words
addition reactions - amino acids - asymmetric synthesis - keto esters - organocatalysts
- 1a 
             
            Heimgartner H. Angew. Chem., Int. Ed. Engl. 1991, 30: 238
- 1b 
             
            Williams RM.Hendrix JA. Chem. Rev. 1992, 92: 889
- 1c 
             
            Duthaler RO. Tetrahedron 1994, 50: 1539
- 1d 
             
            Wirth T. Angew. Chem., Int. Ed. Engl. 1997, 36: 225
- 1e 
             
            Hanessian S.McNaughton-Smith G.Lombart H.-G.Lubell WD. Tetrahedron 1997, 53: 12789
- 1f 
             
            Cativiela C.Dîaz-de-Villegas MD. Tetrahedron: Asymmetry 1998, 9: 3517
- 1g 
             
            Gibson SE.Guillo N.Tozer MJ. Tetrahedron 1999, 55: 585
- 1h 
             
            Cativiela C.Dîaz-de-Villegas MD. Tetrahedron: Asymmetry 2000, 11: 645
- 2a 
             
            Ohfune Y.Demura T.Iwama S.Matsuda H.Namba K.Shimamoto K.Shinada T. Tetrahedron Lett. 2003, 44: 5431
- 2b 
             
            Andrei M.Undheim K. Tetrahedron: Asymmetry 2004, 15: 53
- 2c 
             
            Watts J.Benn A.Flinn N.Monk T.Ramjee M.Ray P.Wang Y.Quibell M. Bioorg. Med. Chem. 2004, 12: 2903
- 3a 
             
            Diels O. Justus Liebigs Ann. Chem. 1922, 429: 1
- 3b 
             
            Genet J.-P.Greck C.Lavergne D. In Modern Amination MethodsRicci A. Wiley-VCH; Weinheim, Germany: 2000. Chap. 3.
- 3c 
             
            Duthaler RO. Angew. Chem. Int. Ed. 2003, 42: 975
- 3d 
             
            Greck C.Drouillat B.Thomassigny C. Eur. J. Org. Chem. 2004, 1377
- 4a 
             
            List B. J. Am. Chem. Soc. 2002, 124: 5656
- 4b 
             
            Bøgevig A.Juhl K.Kumaragurubaran N.Zhuang W.Jørgensen KA. Angew. Chem. Int. Ed. 2002, 41: 1790
- 4c 
             
            Vogt H.Vanderheiden S.Bräse S. Chem. Commun. 2003, 2448
- 4d 
             
            Iwamura H.Mathew SP.Blackmond DG. J. Am. Chem. Soc. 2004, 126: 11770
- 5 
             
            Kumaragurubaran N.Juhl K.Zhuang W.Bøgevig A.Jørgensen KA. J. Am. Chem. Soc. 2002, 124: 6254
- 6 
             
            Juhl K.Jørgensen KA. J. Am. Chem. Soc. 2002, 124: 2420
- 7 
             
            Marigo M.Juhl K.Jørgensen KA. Angew. Chem. Int. Ed. 2003, 42: 1367
- 8a 
             
            Saaby S.Bella M.Jørgensen KA. J. Am. Chem. Soc. 2004, 126: 8120
- 8b 
             
            Liu X.Li H.Deng L. Org. Lett. 2005, 7: 167
- 9a 
             
            Chowdari NS.Barbas CF. Org. Lett. 2005, 7: 867
- 9b 
             
            Suri JT.Steiner DD.Barbas CF. Org. Lett. 2005, 7: 3885
- 10 
             
            Pihko PM.Pohjakallio A. Synlett 2004, 2115
- 11a 
             
            Okino T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2003, 125: 12672
- 11b 
             
            Okino T.Hoashi Y.Furukawa T.Xu X.Takemoto Y. J. Am. Chem. Soc. 2005, 127: 119
- 11c 
             
            Okino T.Nakamura S.Furukawa T.Takemoto Y. Org. Lett. 2004, 6: 625
- 11d 
             
            Hoashi Y.Okino T.Takemoto Y. Angew. Chem. Int. Ed. 2005, 44: 4032
- 12a 
             
            Fuerst DE.Jacobsen EN. J. Am. Chem. Soc. 2005, 127: 8964
- 12b 
             
            Vachal P.Jacobsen EN. J. Am. Chem. Soc. 2002, 124: 10012
- 12c 
             
            Sohtome Y.Tanatani A.Hashimoto Y.Nagasawa K. Tetrahedron Lett. 2004, 45: 5589
- 12d 
             
            Berkessel A.Cleemann F.Mukherjee S.Müller TN.Lex J. Angew. Chem. Int. Ed. 2005, 44: 807
- 12e 
             
            Berkessel A.Mukherjee S.Cleemann F.Müller TN.Lex J. Chem. Commun. 2005, 1898
- 12f 
             
            Li B.-J.Jiang L.Liu M.Chen Y.-C.Ding L.-S.Wu Y. Synlett 2005, 603
- 12g 
             
            Vakulya B.Varga S.Csampai A.Soos T. Org. Lett. 2005, 7: 1967
- 12h 
             
            Wang J.Li H.Yu X.Zu L.Wang W. Org. Lett. 2005, 7: 4293
- For reviews on Brønsted acid catalysis, see:
- 13a 
             
            Schreiner PR. Chem. Soc. Rev. 2003, 32: 289
- 13b 
             
            Pihko PM. Angew. Chem. Int. Ed. 2004, 43: 2062
- 13c 
             
            Bolm C.Rantanen T.Schiffers I.Zani L. Angew. Chem. Int. Ed. 2005, 44: 1758
- For recent representative papers on Brønsted acid catalysts, see:
- 13d 
             
            McDougal NT.Schaus SE. J. Am. Chem. Soc. 2003, 125: 12094
- 13e 
             
            Nugent BM.Yoder RA.Johnston JN. J. Am. Chem. Soc. 2004, 126: 3418
- 13f 
             
            Thadani AN.Stankovic AR.Rawal VH. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5846
- 13g 
             
            Akiyama T.Itoh J.Yokota K.Fuchibe K. Angew. Chem. Int. Ed. 2004, 43: 1566
- 13h 
             
            Momiyama N.Yamamoto H. J. Am. Chem. Soc. 2005, 127: 1080
- 13i 
             
            Matsui K.Takigawa S.Sasai H. J. Am. Chem. Soc. 2005, 127: 3680
- 13j 
             
            Uraguchi D.Sorimachi K.Terada M. J. Am. Chem. Soc. 2005, 127: 9360
References and Notes
         General Experimental Procedure.
         
To a stirred solution of 1,3-dicarbonyl compound 3 (0.11 mmol, 110 mol%) and urea catalyst 1b (4.0 mg, 0.010 mmol) in toluene (1 mL) was added di-tert-butyl azodicarboxylate (2a, 23.0 mg, 0.10 mmol) at the temperature described in Table 
         [2]
         . The resulting yellow solution was stirred at the same temperature until the yellow
         color of the solution disappeared. The reaction mixture was concentrated in vacuo
         and the obtained residue was purified by silica gel column chromatography to give
         the desired product 4.
All new compounds 4 gave satisfactory spectral data. Selected characterization data:
            
            Compound 4f (Table 
         [2]
         , entry 5): the enantioselectivity was determined to be 89% ee by chiral HPLC using
         a Chiralpak OD-H column [hexane-i-PrOH = 95:5, 0.5 mL/min, λ = 210 nm, t
         R(major) = 9.4 min, t
         R(minor) = 11.8 min]. [α]D
         25 +22.4 (c 0.33, CHCl3). IR (CHCl3): ν = 3370, 2936, 2253, 1726, 1240 cm-1. 1H NMR (500 MHz, CDCl3): δ = 6.40 (br s, 1 H), 2.60 (m, 1 H), 2.22 (m, 1 H), 1.93 (m, 1 H), 1.66 (m, 1 H),
         1.49 (m, 6 H), 1.47 (s, 9 H), 1.46 (s, 9 H), 1.44 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 169.9, 156.5, 155.9, 155.5, 81.4, 60.3, 52.7, 52.5, 40.6, 39.4, 34.7, 30.3,
         28.1, 28.0, 27.9, 25.7, 23.7. MS (FAB-): m/z (%) = 443 (80) [MH+], 275 (100). HRMS (FAB+): m/z calcd for [C22H39N2O7]+: 443.2757; found: 443.2763.
Compound 4g (Table 
         [2]
         , entry 6): the enantioselectivity was determined to be 90% ee by chiral HPLC using
         a Chiralpak AD-H column [hexane-EtOH = 90:10, 0.25 mL/min, λ = 254 nm, t
         
            R
            (major) = 25.4 min, t
         R(minor) = 18.9 min]. [α]D
         25 +50.9 (c 0.10, CHCl3). IR (CHCl3): ν = 3156, 2985, 2360, 1725, 1152 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.74 (m, 1 H), 7.60 (d, J = 6.41 Hz, 1 H), 7.48 (d, J = 7.63 Hz, 1 H), 7.35 (d, J = 7.93 Hz, 1 H), 6.73 (br s, 1 H), 4.20 (d, J = 16.8 Hz, 1 H), 3.75 (d, J = 16.5 Hz, 1 H), 1.49 (s, 9 H), 1.41 (s, 9 H), 1.29 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 171.2, 154.9, 154.2, 153.7, 135.9, 135.3, 133.6, 127.4, 126.0, 124.8, 82.6,
         82.0, 81.4, 81.1, 60.3, 28.1, 27.8, 27.6. MS (FAB+): m/z (%) = 463 (70) [MH+], 295 (100). HRMS (FAB+): m/z calcd for [C24H35N2O7]+: 463.2444; found: 463.2440.
 
    