References and Notes
1a
Heimgartner H.
Angew. Chem., Int. Ed. Engl.
1991,
30:
238
1b
Williams RM.
Hendrix JA.
Chem. Rev.
1992,
92:
889
1c
Duthaler RO.
Tetrahedron
1994,
50:
1539
1d
Wirth T.
Angew. Chem., Int. Ed. Engl.
1997,
36:
225
1e
Hanessian S.
McNaughton-Smith G.
Lombart H.-G.
Lubell WD.
Tetrahedron
1997,
53:
12789
1f
Cativiela C.
Dîaz-de-Villegas MD.
Tetrahedron: Asymmetry
1998,
9:
3517
1g
Gibson SE.
Guillo N.
Tozer MJ.
Tetrahedron
1999,
55:
585
1h
Cativiela C.
Dîaz-de-Villegas MD.
Tetrahedron: Asymmetry
2000,
11:
645
2a
Ohfune Y.
Demura T.
Iwama S.
Matsuda H.
Namba K.
Shimamoto K.
Shinada T.
Tetrahedron Lett.
2003,
44:
5431
2b
Andrei M.
Undheim K.
Tetrahedron: Asymmetry
2004,
15:
53
2c
Watts J.
Benn A.
Flinn N.
Monk T.
Ramjee M.
Ray P.
Wang Y.
Quibell M.
Bioorg. Med. Chem.
2004,
12:
2903
3a
Diels O.
Justus Liebigs Ann. Chem.
1922,
429:
1
3b
Genet J.-P.
Greck C.
Lavergne D.
In Modern Amination Methods
Ricci A.
Wiley-VCH;
Weinheim, Germany:
2000.
Chap. 3.
3c
Duthaler RO.
Angew. Chem. Int. Ed.
2003,
42:
975
3d
Greck C.
Drouillat B.
Thomassigny C.
Eur. J. Org. Chem.
2004,
1377
4a
List B.
J. Am. Chem. Soc.
2002,
124:
5656
4b
Bøgevig A.
Juhl K.
Kumaragurubaran N.
Zhuang W.
Jørgensen KA.
Angew. Chem. Int. Ed.
2002,
41:
1790
4c
Vogt H.
Vanderheiden S.
Bräse S.
Chem. Commun.
2003,
2448
4d
Iwamura H.
Mathew SP.
Blackmond DG.
J. Am. Chem. Soc.
2004,
126:
11770
5
Kumaragurubaran N.
Juhl K.
Zhuang W.
Bøgevig A.
Jørgensen KA.
J. Am. Chem. Soc.
2002,
124:
6254
6
Juhl K.
Jørgensen KA.
J. Am. Chem. Soc.
2002,
124:
2420
7
Marigo M.
Juhl K.
Jørgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
1367
8a
Saaby S.
Bella M.
Jørgensen KA.
J. Am. Chem. Soc.
2004,
126:
8120
8b
Liu X.
Li H.
Deng L.
Org. Lett.
2005,
7:
167
9a
Chowdari NS.
Barbas CF.
Org. Lett.
2005,
7:
867
9b
Suri JT.
Steiner DD.
Barbas CF.
Org. Lett.
2005,
7:
3885
10
Pihko PM.
Pohjakallio A.
Synlett
2004,
2115
11a
Okino T.
Hoashi Y.
Takemoto Y.
J. Am. Chem. Soc.
2003,
125:
12672
11b
Okino T.
Hoashi Y.
Furukawa T.
Xu X.
Takemoto Y.
J. Am. Chem. Soc.
2005,
127:
119
11c
Okino T.
Nakamura S.
Furukawa T.
Takemoto Y.
Org. Lett.
2004,
6:
625
11d
Hoashi Y.
Okino T.
Takemoto Y.
Angew. Chem. Int. Ed.
2005,
44:
4032
12a
Fuerst DE.
Jacobsen EN.
J. Am. Chem. Soc.
2005,
127:
8964
12b
Vachal P.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
10012
12c
Sohtome Y.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Tetrahedron Lett.
2004,
45:
5589
12d
Berkessel A.
Cleemann F.
Mukherjee S.
Müller TN.
Lex J.
Angew. Chem. Int. Ed.
2005,
44:
807
12e
Berkessel A.
Mukherjee S.
Cleemann F.
Müller TN.
Lex J.
Chem. Commun.
2005,
1898
12f
Li B.-J.
Jiang L.
Liu M.
Chen Y.-C.
Ding L.-S.
Wu Y.
Synlett
2005,
603
12g
Vakulya B.
Varga S.
Csampai A.
Soos T.
Org. Lett.
2005,
7:
1967
12h
Wang J.
Li H.
Yu X.
Zu L.
Wang W.
Org. Lett.
2005,
7:
4293
For reviews on Brønsted acid catalysis, see:
13a
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
13b
Pihko PM.
Angew. Chem. Int. Ed.
2004,
43:
2062
13c
Bolm C.
Rantanen T.
Schiffers I.
Zani L.
Angew. Chem. Int. Ed.
2005,
44:
1758
For recent representative papers on Brønsted acid catalysts, see:
13d
McDougal NT.
Schaus SE.
J. Am. Chem. Soc.
2003,
125:
12094
13e
Nugent BM.
Yoder RA.
Johnston JN.
J. Am. Chem. Soc.
2004,
126:
3418
13f
Thadani AN.
Stankovic AR.
Rawal VH.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5846
13g
Akiyama T.
Itoh J.
Yokota K.
Fuchibe K.
Angew. Chem. Int. Ed.
2004,
43:
1566
13h
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2005,
127:
1080
13i
Matsui K.
Takigawa S.
Sasai H.
J. Am. Chem. Soc.
2005,
127:
3680
13j
Uraguchi D.
Sorimachi K.
Terada M.
J. Am. Chem. Soc.
2005,
127:
9360
14
General Experimental Procedure.
To a stirred solution of 1,3-dicarbonyl compound 3 (0.11 mmol, 110 mol%) and urea catalyst 1b (4.0 mg, 0.010 mmol) in toluene (1 mL) was added di-tert-butyl azodicarboxylate (2a, 23.0 mg, 0.10 mmol) at the temperature described in Table
[2]
. The resulting yellow solution was stirred at the same temperature until the yellow color of the solution disappeared. The reaction mixture was concentrated in vacuo and the obtained residue was purified by silica gel column chromatography to give the desired product 4.
All new compounds 4 gave satisfactory spectral data. Selected characterization data:
Compound 4f (Table
[2]
, entry 5): the enantioselectivity was determined to be 89% ee by chiral HPLC using a Chiralpak OD-H column [hexane-i-PrOH = 95:5, 0.5 mL/min, λ = 210 nm, t
R(major) = 9.4 min, t
R(minor) = 11.8 min]. [α]D
25 +22.4 (c 0.33, CHCl3). IR (CHCl3): ν = 3370, 2936, 2253, 1726, 1240 cm-1. 1H NMR (500 MHz, CDCl3): δ = 6.40 (br s, 1 H), 2.60 (m, 1 H), 2.22 (m, 1 H), 1.93 (m, 1 H), 1.66 (m, 1 H), 1.49 (m, 6 H), 1.47 (s, 9 H), 1.46 (s, 9 H), 1.44 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 169.9, 156.5, 155.9, 155.5, 81.4, 60.3, 52.7, 52.5, 40.6, 39.4, 34.7, 30.3, 28.1, 28.0, 27.9, 25.7, 23.7. MS (FAB-): m/z (%) = 443 (80) [MH+], 275 (100). HRMS (FAB+): m/z calcd for [C22H39N2O7]+: 443.2757; found: 443.2763.
Compound 4g (Table
[2]
, entry 6): the enantioselectivity was determined to be 90% ee by chiral HPLC using a Chiralpak AD-H column [hexane-EtOH = 90:10, 0.25 mL/min, λ = 254 nm, t
R
(major) = 25.4 min, t
R(minor) = 18.9 min]. [α]D
25 +50.9 (c 0.10, CHCl3). IR (CHCl3): ν = 3156, 2985, 2360, 1725, 1152 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.74 (m, 1 H), 7.60 (d, J = 6.41 Hz, 1 H), 7.48 (d, J = 7.63 Hz, 1 H), 7.35 (d, J = 7.93 Hz, 1 H), 6.73 (br s, 1 H), 4.20 (d, J = 16.8 Hz, 1 H), 3.75 (d, J = 16.5 Hz, 1 H), 1.49 (s, 9 H), 1.41 (s, 9 H), 1.29 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 171.2, 154.9, 154.2, 153.7, 135.9, 135.3, 133.6, 127.4, 126.0, 124.8, 82.6, 82.0, 81.4, 81.1, 60.3, 28.1, 27.8, 27.6. MS (FAB+): m/z (%) = 463 (70) [MH+], 295 (100). HRMS (FAB+): m/z calcd for [C24H35N2O7]+: 463.2444; found: 463.2440.