RSS-Feed abonnieren
DOI: 10.1055/s-2006-932465
Improved Synthesis of Quinacridine Derivatives
Publikationsverlauf
Publikationsdatum:
20. Februar 2006 (online)
Abstract
An efficient synthetic pathway toward various substituted quinacridines 1 and 2 has been developed. Compared to the previous method, higher yields and easier workup were obtained.
Key words
heterocyclic synthesis - palladium coupling - aromatization - selenium oxidation - quinacridine
-
1a
Belser P.von Zelewsky A. Helv. Chim. Acta 1980, 63: 1675 -
1b
Wu F.Thummel RP. Inorg. Chim. Acta 2002, 327: 26 - 2
Jahng Y.Hazelrigg J.Kimball D.Riesgo E.Wu F.Thummel RP. Inorg. Chem. 1997, 36: 5390 -
3a
Sjögren M.Hansson S.Norrby P.-O.Åkermark B. Organometallics 1992, 11: 3954 -
3b
Sjögren MPT.Hansson S.Åkermark B. Organometallics 1994, 13: 1963 -
4a
Tanaka Y.Sekita A.Suzuki H.Yamashita M.Oshikawa O.Yonemitsu T.Torii A. J. Chem. Soc., Perkin Trans. 1 1998, 2471 -
4b
Watanabe M.Suzuki H.Tanaka Y.Ishida T.Oshikawa T.Torii A. J. Org. Chem. 2004, 69: 7794 -
5a
Baudouin O.Teulade-Fichou M.-P.Vigneron J.-P.Lehn J.-M. Chem. Commun. 1998, 2349 -
5b
Baudouin O.Marchand C.Teulade-Fichou M.-P.Vigneron J.-P.Sun J.-S.Garestier T.Hélène C.Lehn J.-M. Chem. Eur. J. 1998, 4: 1504 -
5c
Mergny J.-L.Lacroix L.Teulade-Fichou M.-P.Hounsou C.Guittat L.Hoarau M.Arimondo PB.Vigneron J.-P.Lehn J.-M.Riou J.-F.Garestier T.Hélène C. Proc. Natl. Acad. Sci. U.S.A. 2001, 98: 3062 -
5d
Teulade-Fichou M.-P.Perrin D.Boutorine A.Vigneron J.-P.Lehn J.-M.Sun J.-S.Garestier T.Hélène C. J. Am. Chem. Soc. 2001, 123: 9283 -
6a
Teulade-Fichou M.-P.Carrasco C.Bailly C.Alberti P.Mergny J.-L.David A.Lehn J.-M.Wilson WD. J. Am. Chem. Soc. 2003, 125: 4732 -
6b
Baudouin O.Teulade-Fichou M.-P.Vigneron J.-P.Lehn J.-M. J. Org. Chem. 1997, 62: 5458 - 7
De Feyter S.Gesquiere A.de Schryver FC.Keller U.Müllen K. Chem. Mater. 2002, 14: 989 - 8
Jabbour JE.Shaheen SE.Wang JF.Morrell MM.Kippelen B.Peyghambarian N. Appl. Phys. Lett. 1997, 70: 1665 - 9
Smith JA.West RM.Allen M. J. Fluorescence 2004, 14: 151 - Others less straightforward routes towards quinacridines have been described, see:
-
10a
Seli ST.Mohan PS. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2000, 39: 703 -
10b
Gogte VN.Mullick GB.Tilak BD. Indian J. Chem. 1974, 12: 1324 - 11
Thummel RP.Lefoulon F. J. Org. Chem. 1985, 50: 666 -
12a
Hu Y.-Z.Zhang G.Thummel RP. Org. Lett. 2003, 5: 2251 -
12b
Viau L.Sénéchal K.Maury O.Guégan J.-P.Dupau P.Toupet L.Le Bozec H. Synthesis 2003, 577 - On this reaction applied to acridine synthesis, see:
-
13a
Veverková E.Nosková M.Toma Š. Synth. Commun. 2002, 32: 729 -
13b
Seijas JA.Vázquez-Tato M.-P.Montserrat Martinez M.Rodriguez-Parga J. Green Chem. 2002, 4: 390 -
13c
Koshima H.Kutsunai K. Heterocycles 2002, 57: 1299 - 14
Jacquelin C.Saettel N.Hounsou C.Teulade-Fichou M.-P. Tetrahedron Lett. 2005, 46: 2589 - 15
Ames DE.Opalko A. Tetrahedron 1984, 40: 1919 - 16
Csuk R.Barthel A.Raschke C. Tetrahedron 2004, 60: 5737 - 19
Cosimbescu L, andShi J. inventors; US Pat. Appl. US 2004002605. ; Chem. Abstr. 2004, 140, 77134 -
20a
Heravi MM.Behbahani FK.Oskooie HA.Shoar RH. Tetrahedron Lett. 2005, 46: 2775 -
20b
CAUTION: metallic perchlorate salts were reported to be explosive.
-
22a
Bonthrone W. J. Chem. Soc. 1959, 2773 -
22b
Bonthrone W. J. Chem. Ind. 1960, 1192 -
22c
In all cases, quantitative aromatization was observed on the crude mixture NMR analysis.
- 24
Cai X.-H.Yang H.-J.Zhang G.-L. Can. J. Chem. 2005, 83: 273 - 27
Cellier PP.Spindler J.-F.Taillefer M.Cristau H.-J. Tetrahedron Lett. 2003, 44: 7191 - 28
El-Massry A.-M.Amer A.Pittman CU. Synth. Commun. 1990, 20: 1091 - 29
Boukherroub R.Chatgilialoglu C.Manuel G. Organometallics 1996, 15: 1508 -
31a
X-ray structure of intermediate 7c (R = CH3) showed that the molecule exhibits a dihedral angle of 35.9° (Cesario, M.; Baudoin, O.; Teulade-Fichou, M.-P. unpublished results).
-
31b
Baudoin O. PhD Thesis Université Pierre and Marie Curie; Paris: 1998. - 32
Inanaga J.Ishikawa M.Yamaguchi M. Chem. Lett. 1987, 1485 - 33
Shabangi M.Sealy JM.Fuchs JR.Flowers RA. Tetrahedron Lett. 1998, 39: 4429 - 34
Dahlen A.Himersson G.Knettle BW.Flowers RA. J. Org. Chem. 2003, 68: 4870 - 35
Kamochi Y.Kudo T. Heterocycles 1993, 36: 2383 - 37
Lee H.Harvey RG. J. Org. Chem. 1988, 53: 4587 -
38a
Firouzabadi H.Salehi P.Sardarian AR.Seddighi M. Synth. Commun. 1991, 21: 1121 -
38b
Firouzabadi H.Salehi P.Mohammadpour-Baltokr I. Bull. Chem. Soc. Jpn. 1992, 65: 2878 - 39
Nicolaou KC.Baran PS.Zhong Y.-L. J. Am. Chem. Soc. 2001, 123: 3183
References and Notes
General Procedure.
In freshly distilled and degassed toluene (20 mL) was placed Pd(OAc)2 (5% molar) under an inert atmosphere. Then tri-tert-butylphosphine was added (15%) and the solution was allowed to stir 10 min. Dibromobenzene derivative (5 mmol), methyl anthranilate derivative (12 mmol) and Cs2CO3 (15 mmol) were successively added. After overnight reflux, crude mixture was allowed to cool and was then quenched by 50 mL NH4Cl (1 M) solution. About 100 mL CH2Cl2 were added and the biphasic mixture separated. The aqueous phase was extracted twice by CH2Cl2. Organic phases were dried on Na2SO4 and evaporated to dryness. The resulting brown oil was purified by column chromatography, using an CH2Cl2-n-hexane (1:1) mixture as eluant, affording a yellow powder.
Spectroscopic data for selected compounds.
Compound 5: yellow solid; mp 85-88 °C; R
f
= 0.35 (CH2Cl2-n-hexane, 1:1). 1H NMR (DMSO-d
6): δ = 9.47 (s, 1 H), 9.33 (s, 1 H), 7.89 (dd, J = 1.8, 8.1 Hz, 1 H), 7.71 (s, 1 H), 7.41 (s, 1 H), 7.26 (s, 4 H), 7.13-7.23 (m, 3 H), 6.75-6.80 (m, 1 H), 3.86 (s, 3 H), 3.85 (s, 3 H), 2.23 (s, 3 H). 13C NMR (DMSO-d
6): δ = 168.6, 148.0, 145.2, 137.2, 135.8, 134.8, 131.8, 131.3, 126.7, 124.2, 123.1, 117.6, 115.0, 114.0, 112.3, 111.8, 52.4, 20.1. DCI-MS: m/z (%) = 391 (100), 392 (26), 393 (5).
Coumpound 6b: yellow solid; mp 97-98 °C; R
f
= 0.37 (CH2Cl2-n-hexane, 1:1). 1H NMR (DMSO-d
6
): δ = 9.26 (s, 1 H), 9.18 (s, 1 H), 7.95 (d, J = 1.5 Hz, 1 H), 7.92 (d, J = 1.5 Hz, 1 H), 7.25-7.36 (m, 4 H), 7.13 (dd, J = 8.4, 1.5 Hz, 1 H), 6.99 (m, 2 H), 6.74 (m, 2 H), 3.86 (s, 3 H), 3.84 (s, 3 H), 2.39 (s, 3 H). 13C NMR (CDCl3): δ = 168.7, 168.5, 150.8, 148.5, 135.3, 134.9, 134.1, 134.0, 133.9, 131.7, 131.5, 131.4, 125.1, 124.3, 117.2, 116.8, 114.6, 114.2, 112.7, 112.1, 51.7, 51.6, 21.1. DCI-MS: m/z (%) = 391 (100) [M+], 392 (26), 393 (4).
In the ortho series, reaction with POCl3 leads to intractable mixture. Nevertheless, dichloroquinacridines are preferred over quinacridones since they are more soluble and less hygroscopic.
21In our hands, a 29:71 molar ratio of quinacridine 2b (R2 = CH3, R1 = R3 = H) and dihydroquinacridine(9b) mixture was brought up only to 73:27 (2b:9b). Increasing the catalytic load to 7% and the reaction time from 45 min to 16 h led to a similar result.
23
General Procedure.
The amount of hydrogenated quinacridines in the mixture was estimated my NMR, based on the relative peak inten-sities. Characteristic peaks of hydrogenated quinacridines were located at δ = 4.5 ppm (methylene group), whereas those of quinacridine are the more downfield-shifted at δ = 9.4 ppm (para) or δ = 8.6 ppm (ortho). Lateral methyl groups are also of relevant importance and are situated in the 2.3-3.1 ppm zone, those borne by hydrogenated products being shifted more upfield. Such a mixture (300 µmol in hydro-genated compounds) was dissolved in AcOH (10 mL), TrBF4 (330 µmol) was added and the mixture was heated to reflux. Crude mixture was poured in cold H2O ca. 10 min later. The pH value was adjusted to neutrality and the brown suspension was filtered and dried. The mixture was purified by column chromatography using a gradient of MeOH in CH2Cl2 (1-3% v/v).
After 80 min and at r.t., a 90% conversion is observed after 30 min as judged by NMR. Due to formation of red colloidal selenium, use of TrBF4 seems to be of greater synthetic use for conversion of dihydrogenated quinacridines into quinacridines.
26Adding SeO2 twice in the same flask seems to be preferable than an unique initial load. Selenium dioxide was firstly reacted in a flask containing both substrate 9d and AcOH. Then, 80 min later, AcOH was evaporated, naphthalene added, SeO2 newly added and mixture heated to 230 °C. When both loads of SeO2 were initially mixed with substrate and acid, a 72:28 ratio was obtained.
30Compound 11: white solid; mp 236-238 °C; R f = 0.37 (CH2Cl2-MeOH, 9:1). 1H NMR (CDCl3): δ = 8.18 (s, 2 H), 8.02 (d, 2 H, J = 8.4 Hz), 7.67 (dd, 2 H, J = 8.7. 1.8 Hz), 3.32 (m, 4 H), 2.66 (s, 6 H). 13C NMR (CDCl3): δ = 160.6, 145.9, 141.1, 137.3, 133.0, 128.6, 126.1, 124.2, 124.0, 34.1, 21.9. DCI-MS: m/z (%) = 379 (100) [M+], 380 (26), 381 (67), 382 (16), 383 (12).
36Compound 7c was reacted with 5 equiv of SmI2 for 1 h at r.t. in a THF/HMPA mixture. Increasing the reaction time to 2 h or 24 h, as well as using 6 equiv of SmI2, did not modify the reaction course.