Abstract
Guanacastepene A, the leading member of a structurally diverse family of diterpene natural products, was isolated from the extracts of an unidentified fungus. The discovery of its potent antibiotic activity as well as its previously unreported tricyclic architecture render guanacastepene A an attractive and formidable target for total synthesis. Specifically, guanacastepene A’s synthetic challenges include 2 ring-junction quaternary methyl groups and a novel 5-7-6 tricyclic carbon skeleton possessing a dense array of oxygen and unsaturated functionalities. In this account, we will discuss our motivation and efforts toward the total synthesis of guanacastepene A as well as highlight the contributions from the synthetic community toward this pursuit.
1 Introduction
1.1 Biological Activity
1.2 Isolation and Characterization
2 An Overview of Synthetic Strategies
2.1 Hydroazulene Core
2.2 Hydroazulene to Tricycle
2.3 Tricycle Closure by a Formal C10-C11 Connection
2.4 Tricycle Closure between C1-C2
2.5 A-Ring to Tricycle
2.6 C-Ring to Tricycle
3 Our Strategy
3.1 Initial Planning
3.2 Retrosynthesis
3.3 Synthesis of the Guanacastane Tricycle
3.4 Elaboration of the Tricycle
3.5 Investigation of the Aldol Reaction
3.6 A More Convergent Synthetic Approach
4 Current Investigation
5 Conclusion
Key words
guanacastepene - diterpene - total synthesis
References and Notes
1
Brady SF.
Singh MP.
Janso JE.
Clardy J.
J. Am. Chem. Soc.
2000,
122:
2116
2
Henkel T.
Brunne RM.
Müller H.
Reichel F.
Angew. Chem. Int. Ed.
1999,
38:
643
3
Singh MP.
Janso JE.
Luckman SW.
Brady SF.
Clardy J.
Greenstein M.
Maiese WM.
J. Antibiot.
2000,
53:
256
4
Tan DS.
Dudley GB.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2002,
41:
2185
5
Brady SF.
Bondi SM.
Clardy J.
J. Am. Chem. Soc.
2001,
123:
9900
6
Mischne M.
Curr. Org. Synth.
2005,
2:
261
7a
Mandal M.
Yun H.
Dudley GB.
Lin S.
Tan DS.
Danishefsky SJ.
J. Org. Chem.
2005,
70:
10619
7b
Yun H.
Danishefsky SJ.
Tetrahedron Lett.
2005,
46:
3879
7c
Mandal M.
Danishefsky SJ.
Tetrahedron Lett.
2004,
45:
3831
7d
Mandal M.
Danishefsky SJ.
Tetrahedron Lett.
2004,
45:
3827
7e
Dudley GB.
Danishefsky SJ.
Sukenick G.
Tetrahedron Lett.
2002,
43:
5605
7f
Lin S.
Dudley GB.
Tan DS.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2002,
41:
2188
7g
Tan DS.
Dudley GB.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2002,
41:
2185
7h
Dudley GB.
Tan DS.
Kim G.
Tanski JM.
Danishefsky SJ.
Tetrahedron Lett.
2001,
42:
6789
7i
Dudley GB.
Danishefsky SJ.
Org. Lett.
2001,
3:
2399
8a
Shi B.
Hawryluk NA.
Snider BB.
J. Org. Chem.
2003,
68:
1030
8b
Snider BB.
Shi B.
Tetrahedron Lett.
2001,
42:
9123
8c
Snider BB.
Hawryluk NA.
Org. Lett.
2001,
3:
569
9a
Boyer F.-D.
Hanna I.
Ricard L.
Org. Lett.
2004,
6:
1817
9b
Boyer F.-D.
Hanna I.
Tetrahedron Lett.
2002,
43:
7469
10a
Mehta G.
Pallavi K.
Umarye JD.
Chem. Commun.
2005,
4456
10b
Mehta G.
Umarye JD.
Srinivas K.
Tetrahedron Lett.
2003,
44:
4233
10c
Mehta G.
Umarye JD.
Srinivas K.
Tetrahedron Lett.
2002,
43:
6975
10d
Mehta G.
Umarye JD.
Org. Lett.
2002,
4:
1063
11a
Magnus P.
Ollivier C.
Tetrahedron Lett.
2002,
43:
9605
11b
Magnus P.
Waring MJ.
Ollivier C.
Lynch V.
Tetrahedron Lett.
2001,
42:
4947
12a
Evans DA.
Andrews GC.
Acc. Chem. Res.
1974,
7:
147
12b
Zhou ZS.
Flohr A.
Hilvert D.
J. Org. Chem.
1999,
64:
8334
13
Nakazaki A.
Sharma U.
Tius MA.
Org. Lett.
2002,
4:
3363
14
Chiu P.
Li S.
Org. Lett.
2004,
6:
613
15
Srikrishna A.
Dethe DH.
Org. Lett.
2004,
6:
165
16
Quinkert G.
Müller T.
Königer A.
Schultheis O.
Sickenberger B.
Dürner G.
Tetrahedron Lett.
1992,
33:
3469
17
Shipe WD.
Sorensen EJ.
Org. Lett.
2002,
4:
2063
18a
Hughes CC.
Miller AK.
Trauner D.
Org. Lett.
2005,
7:
3425
18b
Hughes CC.
Kennedy-Smith JJ.
Trauner D.
Org. Lett.
2003,
5:
4113
19
Wright DL.
Whitehead CR.
Sessions EH.
Ghiviriga I.
Frey DA.
J. Am. Chem. Soc.
1999,
121:
1535
20
Mihelcic J.
Moeller KD.
J. Am. Chem. Soc.
2004,
126:
9106
21a
Du X.
Chu HV.
Kwon O.
Tetrahedron Lett.
2004,
45:
8843
21b
Du X.
Chu HV.
Kwon O.
Org. Lett.
2003,
5:
1923
22
Li C.-C.
Liang S.
Zhang X.-H.
Xie Z.-X.
Chen J.-H.
Wu Y.-D.
Yang Z.
Org. Lett.
2005,
7:
3709
23
Brummond KM.
Gao D.
Org. Lett.
2003,
5:
3491
24a
Nguyen TM.
Seifert RJ.
Mowrey DR.
Lee D.
Org. Lett.
2002,
4:
3959
24b
Nguyen TM.
Lee D.
Tetrahedron Lett.
2002,
43:
4033
25
Meyers AG.
Hammond M.
Wu Y.
Xiang J.-N.
Harrington PM.
Kuo EY.
J. Am. Chem. Soc.
1996,
118:
10006
26
Burke SD.
Buchanan JL.
Rovin JD.
Tetrahedron Lett.
1991,
32:
3961
27
Sivik MR.
Stanton KJ.
Paquette LA.
Org. Synth.
1995,
72:
57
28a
Erman WF.
J. Am. Chem. Soc.
1967,
89:
3828
28b
Erman WF.
J. Am. Chem. Soc.
1967,
89:
779
29 A slight loss of optical purity (13%) was noted in the photorearrangement, presumably due to a process involving fragmentation of the diradical to an intermediate ketene.
30a
Kulkarni YS.
Niwa M.
Ron E.
Snider BB.
J. Org. Chem.
1987,
52:
1568
30b
Erman WF.
Wenkert E.
Jeffs PW.
J. Org. Chem.
1968,
34:
2196
31
Murthy AR.
Sundar NS.
Rao GSRS.
Tetrahedron
1982,
38:
2831
32a
Black TH.
Aldrichimica Acta
1983,
16:
3
32b
Cushman M.
Cheng L.
J. Org. Chem.
1978,
43:
286
33
Hareau GP.-J.
Koiwa M.
Hikichi S.
Sato F.
J. Am. Chem. Soc.
1999,
121:
3640 ; and references cited therein
34
Lipshutz BH.
Wood RH.
Tirado R.
Org. Synth.
1999,
76:
252
35a
Zakarian A.
Batch A.
Holton RA.
J. Am. Chem. Soc.
2003,
125:
7822
35b
Zhu L.
Weymeyer RM.
Rieke RD.
J. Org. Chem.
1991,
56:
1445
36a
Kim M.
Park S.
Maifeld SV.
Lee D.
J. Am. Chem. Soc.
2004,
126:
10242
36b
Hansen E.
Lee D.
J. Am. Chem. Soc.
2004,
126:
15074
36c
Maifeld SV.
Miller RL.
J. Am. Chem. Soc.
2004,
126:
12228
36d
Miller RL.
Maifeld SV.
Lee D.
Org. Lett.
2004,
6:
2773