RSS-Feed abonnieren
DOI: 10.1055/s-2006-944226
Design and Synthesis of 1,4-Amino Alcohol Ligands with a Chiral Cyclopropane Backbone for Asymmetric Diethylzinc Addition to Aromatic Aldehydes
Publikationsverlauf
Publikationsdatum:
04. Juli 2006 (online)

Abstract
A new type of cis-1,4-amino alcohols with a cyclopropane backbone have been developed in three simple steps, from a cheap industrial intermediate for enantioselective asymmetric diethylzinc addition to aromatic aldehydes, under mild conditions to afford corresponding secondary alcohols in high yield with excellent enantioselectivity.
Key words
amino alcohols - cyclopropane backbone - organozinc addition - diethylzinc - aromatic aldehydes
-
1a
Genov M.Kostova K.Dimitrov V. Tetrahedron: Asymmetry 1997, 8: 1607 -
1b
Genov M.Dimitrov V.Ivanova V. Tetrahedron: Asymmetry 1997, 8: 3703 -
1c
Knollmüller M.Ferencic M.Gärtner P. Tetrahedron: Asymmetry 1999, 10: 3969 -
2a
Pu L.Yu H.-B. Chem. Rev. 2001, 101: 757 -
2b
Pu L. Tetrahedron 2003, 59: 9873 -
2c
Soai K.Nlwa S. Chem. Rev. 1992, 92: 833 -
2d
Noyori R.Kitamura M. Angew. Chem., Int. Ed. Engl. 1991, 30: 49 -
2e
Noyori R. Asymmetric Catalysis in Organic Synthesis Wiley; New York: 1994. Chap. 5. -
3a
Schmidt B.Seebach D. Angew. Chem., Int. Ed. Engl. 1991, 30: 99 -
3b
Schmidt B.Seebach D. Angew. Chem., Int. Ed. Engl. 1991, 30: 1321 -
3c
Seebach D.Beck AK.Schmidt B.Wang YM. Tetrahedron 1994, 50: 4363 -
3d
Weber B.Seebach D. Tetrahedron 1994, 50: 7473 -
3e
Seebach D.Pichota A.Beck AK.Pinkerton AB.Litz T.Karjalainen J.Gramlich V. Org. Lett. 1999, 1: 55 -
3f
Walsh PJ. Acc. Chem. Res. 2003, 36: 739 -
3g
Mori M.Nakai T. Tetrahedron Lett. 1997, 38: 6233 -
3h
Zhang F.-Y.Yip C.-W.Cao R.Chan ASC. Tetrahedron: Asymmetry 1997, 8: 585 -
3i
Zhang F.-Y.Chan ASC. Tetrahedron: Asymmetry 1997, 8: 3651 -
3j
Ding K.Ishii A.Mikami K. Angew. Chem. Int. Ed. 1999, 38: 497 -
3k
Mikami K.Terada M.Korenaga T.Matsumoto Y.Ueki M.Angeland R. Angew. Chem. Int. Ed. 2000, 39: 3532 -
3l
Mikami K.Angeland R.Ding K.Ishii A.Tanaka A.Sawada N.Kudo K.Senda M. Chem. Eur. J. 2001, 7: 730 -
3m
Costa AM.Jimeno C.Gavenonis J.Carroll PJ.Walsh PJ. J. Am. Chem. Soc. 2002, 124: 6929 -
3n
Ding K.Du H.Yuan Y.Long J. Chem. Eur. J. 2004, 10: 2872 -
3o
Kitajima H.Ito K.Katsuki T. Chem. Lett. 1996, 343 -
3p
Kitajima H.Ito K.Katsuki T. Bull. Chem. Soc. Jpn. 1997, 70: 207 -
3q
Huang W.-S.Hu Q.-S.Pu L. J. Org. Chem. 1998, 63: 1364 -
3r
Li Z.-B.Pu L. Org. Lett. 2004, 6: 1065 -
3s
Hatano M.Miyamoto T.Ishihara K. Adv. Synth. Catal. 2005, 347: 1561 -
4a
Delair P.Einhorn C.Einhorn J.Luche JL. J. Org. Chem. 1994, 59: 4680 -
4b
Yamakawa M.Noyori R. J. Am. Chem. Soc. 1995, 117: 6327 -
4c
Dai WM.Zhu HJ.Hao XJ. Tetrahedron: Asymmetry 1996, 7: 1245 -
4d
Bringmann G.Breuning M. Tetrahedron: Asymmetry 1998, 9: 667 -
4e
Cho BT.Chun YS. Tetrahedron: Asymmetry 1998, 9: 1489 -
4f
Paleo MR.Cabeza I.Sardina FJ. J. Org. Chem. 2000, 65: 2108 -
4g
Ko D.-H.Kim KH.Ha D.-C. Org. Lett. 2002, 4: 3759 -
4h
Nugent WA. Org. Lett. 2002, 4: 2133 -
5a
Rijnberg E.Jastrzebski JTBH.Janssen MD.Boersma J.Van Koten G. Tetrahedron Lett. 1994, 35: 6521 -
5b
Jin MJ.Ahn SJ.Lee KS. Tetrahedron Lett. 1996, 37: 8767 -
5c
Anderson JC.Harding M. Chem. Commun. 1998, 393 -
6a
Balsells J.Walsh PJ. J. Am. Chem. Soc. 2000, 122: 3250 -
6b
Balsells J.Walsh PJ. J. Am. Chem. Soc. 2000, 122: 1802 -
6c
Hwang C.-D.Uang B.-J. Tetrahedron: Asymmetry 1998, 9: 3979 -
6d
Qiu J.Guo C.Zhang X. J. Org. Chem. 1997, 62: 2665 -
6e
Prieto O.Ramon DJ.Yus M. Tetrahedron: Asymmetry 2000, 11: 1629 -
6f
Jeon SJ.Li H.Garcia C.LaRochelle LK.Walsh PJ. J. Org. Chem. 2005, 70: 448 -
7a
Faux N.Razafimahefa D.Goetgheluck SP.Brocarda J. Tetrahedron: Asymmetry 2005, 16: 1189 -
7b
Tanyeli C.Sunbul M. Tetrahedron: Asymmetry 2005, 16: 2039 -
8a
Aviron-Violet P.Colleuille Y.Varagnat J. J. Mol. Catal. 1979, 5: 41 -
8b
Okada Y.Minami T.Yamamoto T.Ichikawa J. Chem. Lett. 1992, 547 -
8c
Molander GA.Burke JP.Carroll PJ. J. Org. Chem. 2004, 69: 8062 - For the chiral ligand including achiral cyclopropane moiety, see:
-
8d
Sibi MP.Ji J. J. Org. Chem. 1997, 62: 3800 -
8e
Sibi MP.Chen J. J. Am. Chem. Soc. 2001, 123: 9472 -
8f
Sibi MP.Ma Z.Jasperse CP. J. Am. Chem. Soc. 2004, 126: 718 - Diethylzinc Addition to Aldehydes; General Procedure The chiral ligand (0.1 mmol) was dissolved in hexane (3 mL), cooled to -15 °C, and diethylzinc (1.5 M toluene solution; 1.5 mL, 2.2 mmol) was injected. After the mixture was stirred for 20 min, benzaldehyde (0.1 g, 1 mmol) was added dropwise via syringe, and the mixture was stirred for the corresponding reaction time under N2. The reaction was quenched by the addition of a sat. solution of NH4Cl (10 mL).The mixture was then extracted with Et2O (3 × 15 mL), the combined organic extracts were dried, concentrated in vacuo, and the crude products were purified by flash column chromatography (hexane-EtOAc). The ee values of the alcohol products were determined by HPLC on a Chiralcel OD-H column (i-PrOH-hexane) or by GC analysis on a chiral cyclodextrin capillary column. The absolute configuration of the major enantiomer was assigned by comparison of retention time of HPLC or GC with literature data. For literature related to HPLC or GC analysis, please see:
-
10a
Huang WS.Hu QS.Pu L. J. Org. Chem. 1998, 63: 1364 -
10b
Bolm C.Muñiz-Fernández K.Seger A.Raabe G.Günther K. J. Org. Chem. 1998, 63: 7860 -
10c
Nakamura Y.Takeuchi S.Okumura K.Ohgo Y. Tetrahedron 2001, 57: 5565
References and Notes
cis
-Cyclopropane Aminoester 7a-d; Typical Procedure
To a solution of secondary amine (60 mmol) in MeOH (50 mL) was added 5 N HCl-MeOH (4 mL, 20 mmol), followed by 6 (3.12 g, 20 mmol) and NaBH3CN (1 g, 16 mmol). The resulting solution was stirred at r.t. for 16 h, then concentrated HCl was added until pH <2, and the MeOH was removed in vacuo. The residue was taken up in H2O (15 mL) and extracted with Et2O (3 × 20 mL). The aqueous solution was brought to pH >10 with 20% aq NaOH and extracted with Et2O (5 × 15 mL). The combined extracts were dried over MgSO4 and concentrated under reduced pressure to give 7a-d in 90-95% yields.
cis
-Cyclopropane Aminoalcohol 9a-9d; Typical Procedure
Mg (0.6 g, 25.0 mmol) and a very small amount of I2 were added to anhyd THF (20 mL). A solution of chlorobenzene (3.14 g, 20 mmol) in THF (10 mL) was added slowly dropwise. Once the reaction began, the rest of the chloro-benzene solution was added at a rate that maintained a gentle reflux. After the addition was complete, the mixture was refluxed for 20 min then cooled to -15 °C. Compound 7
(5 mmol) was dissolved in anhyd THF (5 mL) and added to the prepared Grignard mixture. The resulting solution was stirred at r.t. for 12 h. The reaction was quenched with a sat. solution of NH4Cl, and the mixture was extracted several times with Et2O. The combined organic phases was dried over MgSO4 and concentrated under reduced pressure. The residue was purified by flash chromatography (hexane-EtOAc, 1:2) to afford 9a and 9b as white crystals.
8: Oil; [α]D
18 +49.25 (c 0.00201, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.85-0.87 (m, 1 H), 1.06 (s, 3 H), 1.06 (s, 3 H), 2.28 (s, 6 H), 2.33-2.35 (m, 2 H), 3.30-3.34 (m, 1 H), 3.83-3.85 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 15.5, 20.4, 25.5, 29.3, 29.6, 45.0, 55.0, 59.3. HRMS (ESI): m/z calcd for C9H20NO [M+]: 158.1539; found: 158.1543.
9a: Mp 102-103 °C; [α]D
18 +63.5 (c 0.01021, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.91 (s, 3 H), 0.93-0.99 (m, 1 H), 1.22 (s, 3 H), 1.75 (d, 1 H, J = 9.5 Hz), 2.14 (s, 6 H), 2.41-2.45 (m, 1 H), 2.62-2.66 (m, 1 H), 7.09-7.11 (m, 2 H), 7.12-7.16 (m, 4 H), 7.22-7.27 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 15.6, 20.2, 25.9, 30.2, 38.4, 44.2, 55.0, 125.5, 125.7, 125.9, 126.0, 127.6, 127.7, 149.0, 152.0. HRMS (EI): m/z calcd for C21H28NO [M + H+]: 310.2165; found: 310.2164.
9b: Mp 112-113 °C; [α]D
18 +14.1 (c 0.01508, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.91 (s, 1 H), 0.92-1.02 (m, 1 H), 1.22 (s, 3 H), 1.61-1.64 (m, 3 H), 1.65-1.74 (m, 3 H), 2.40-2.91 (m, 5 H), 2.93-2.95 (m, 1 H), 7.09-7.16 (m, 2 H), 7.22-7.28 (m, 4 H), 7.50-7.56 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 15.5, 20.1, 23.3, 26.5, 30.1, 38.3, 51.3, 52.9, 125.3, 125.7, 125.9, 127.6, 127.7, 149.1, 152.1. HRMS (ESI): m/z calcd for C23H30NO [M + H+]: 336.2321; found: 336.2322.
9c: Crystals; mp 162-163 °C; [α]D
18 +167.6 (c 0.00816, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.89 (s, 1 H), 1.00-1.05 (m, 1 H), 1.16 (s, 3 H), 1.20-1.37 (m, 4 H), 1.84 (d, 1 H, J = 9.0 Hz), 2.46-2.50 (m, 1 H), 2.56-2.61 (m, 1 H), 7.09-7.14 (m, 2 H), 7.23-7.27 (m, 4 H), 7.52-7.60 (m, 4 H), 7.78 (br, 1 H). 13C NMR (125 MHz, CDCl3): δ = 15.4, 20.0, 24.1, 25.1, 25.3, 30.3, 37.3, 53.5, 54.7, 125.63, 125.66, 125.74, 125.9, 127.5, 127.7 149.3, 152.0. HRMS (ESI): m/z calcd for C24H32NO [M + H+]: 350.2478; found: 350.2479.
9d: Crystals; mp 156-157 °C; [α]D
18 +158.5 (c 0.00928, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.94 (s, 1 H), 0.93-1.05 (m, 1 H), 1.17 (s, 3 H), 1.88 (d, 1 H, J = 9.0 Hz), 2.35 (br, 2 H), 2.52 (br, 2 H), 2.56-2.60 (m, 1 H), 2.65-2.69 (m, 2 H), 3.30 (br, 2 H), 3.48-3.52 (m, 2 H), 7.11-7.15 (m, 2 H), 7.24-7.27 (m, 4 H), 7.51-7.61 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 15.3, 20.1, 24.5, 30.3, 37.1, 52.64, 54.55, 66.2, 125.5, 125.6, 125.8, 126.2, 127.7, 127.9, 148.9, 151.6. HRMS (ESI): m/z calcd for C23H30NO2 [M + H+]: 352.2271; found: 352.2272.