Subscribe to RSS
DOI: 10.1055/s-2006-956453
Asymmetric Synthesis of (+)-CP-99,994 and (+)-L-733,060 from Enantiomerically Pure (3S,4S)-4-(tert-Butylcarbamoyl)-4-phenyl-1-buten-3-ol
Publication History
Publication Date:
08 December 2006 (online)
Abstract
Asymmetric syntheses of neurokinin substance P receptor antagonists (+)-CP-99,994 and (+)-L-733,060 have been accomplished starting from enantiomerically pure (3S,4S)-4-(tert-butylcarbamoyl)-4-phenyl-1-buten-3-ol.
Key words
1,2-amino alcohols - 1,2-diamines - hydroformylations - neurokinin-1 antagonists - piperidines
-
1a
Desai MC.Lefkowitz SL.Thadeio PF.Longo KP.Snider RM. J. Med. Chem. 1992, 35: 4911 -
1b
Rosen T.Seeger TF.McLean S.Desai MC.Guarino KJ.Bryce D.Pratt K.Heym J.Chalabi PM.Windels JH.Roth RW. J. Med. Chem. 1993, 36: 3197 - For synthesis of racemic 1, see:
-
1c
Desai MC.Thadeio PF.Lefkowitz SL. Tetrahedron Lett. 1993, 34: 5831 -
1d
Chandrasekhar S.Mohanty PK. Tetrahedron Lett. 1999, 40: 5071 -
1e
Yamazaki N.Atobe M.Kibayashi C. Tetrahedron Lett. 2002, 43: 7979 -
1f
Tsuritani N.Yamada K.-I.Yoshikawa N.Shibasaki M. Chem. Lett. 2002, 276 -
1g
Huang P.-Q.Liu L.-X.Wei B.-G.Ruan Y.-P. Org. Lett. 2003, 5: 1927 -
1h
Atobe M.Yamazaki N.Kibayashi C. J. Org. Chem. 2004, 69: 5595 - For syntheses of ent- 1 and ent- 2, see:
-
1i
Lemire A.Grenon M.Pourashraf M.Charette AB. Org. Lett. 2004, 6: 3517 -
1j
Takahashi K.Nakano H.Fujita R. Tetrahedron Lett. 2005, 46: 8927 -
2a
Baker R,Harrison T,Swain CJ, andWilliams BJ. inventors; Eur. Patent, 0528495A1. -
2b
Harrison T.Williams BJ.Swain CJ.Ball RG. Bioorg. Med. Chem. Lett. 1994, 4: 2545 -
2c
Tomooka K.Nakazaki A.Nakai T. J. Am. Chem. Soc. 2000, 122: 408 - For the synthesis of racemic 2, see:
-
2d
Bhaskar G.Rao BV. Tetrahedron Lett. 2003, 44: 915 -
2e
Yoon Y.-J.Joo J.-E.Lee K.-Y.Kim Y.-H.Oh C.-Y.Ham W.-H. Tetrahedron Lett. 2005, 46: 739 -
2f For the synthesis of 14, see:
Stadler H.Bös M. Heterocycles 1999, 51: 1067 - For the synthesis of deprotected 14, see:
-
2g
Lee J.Hoang T.Lewis S.Weissman SA.Askin D.Volante RP.Reider PJ. Tetrahedron Lett. 2001, 42: 6223 -
2h
Tsai M.-R.Chen B.-F.Cheng C.-C.Chang N.-C. J. Org. Chem. 2005, 70: 1780 - 3 For a review, see:
Datar P.Srivastava S.Coutinho E.Govil G. Curr. Top. Med. Chem. 2004, 4: 75 -
4a For a review, see:
Takeuchi Y.Harayama T. J. Synth. Org. Chem., Jpn. 2001, 59: 569 - For recent syntheses of 3 and/or 4, see:
-
4b
Kobayashi S.Ueno M.Suzuki R.Ishitani H. Tetrahedron Lett. 1999, 40: 2175 -
4c
Kobayashi S.Ueno M.Suzuki R.Ishitani H.Kim H.-S.Wataya Y. J. Org. Chem. 1999, 64: 6833 -
4d
Takeuchi Y.Abe H.Harayama T. Chem. Pharm. Bull. 1999, 47: 905 -
4e
Takeuchi Y.Hattori M.Abe H.Harayama T. Synthesis 1999, 1814 -
4f
Takeuchi Y.Azuma K.Takakura K.Abe H.Harayama T. Chem. Commun. 2000, 1643 -
4g
Okitsu O.Suzuki R.Kobayashi S. Synlett 2000, 989 -
4h
Taniguchi T.Ogasawara K. Org. Lett. 2000, 2: 3193 -
4i
Takeuchi Y.Azuma K.Takakura K.Abe H.Kim H.-S.Wataya Y.Harayama T. Tetrahedron 2001, 57: 1213 -
4j
Ooi H.Urushibara A.Esumi T.Iwabuchi Y.Hatakeyama S. Org. Lett. 2001, 3: 953 -
4k
Sugiura M.Kobayashi S. Org. Lett. 2001, 3: 477 -
4l
Okitsu O.Suzuki R.Kobayashi S. J. Org. Chem. 2001, 66: 809 -
4m
Sugiura M.Hagio H.Hirabayashi R.Kobayashi S. J. Am. Chem. Soc. 2001, 123: 12510 -
4n
Huang P.-Q.Wei B.-G.Ruan Y.-P. Synlett 2003, 1663 -
4o
Katoh M.Matsune R.Nagase H.Honda T. Tetrahedron Lett. 2004, 45: 6221 -
4p
Ashoorzadeh A.Caprio V. Synlett 2005, 346 -
4q
Takeuchi Y.Oshige M.Azuma K.Abe H.Harayama T. Chem. Pharm. Bull. 2005, 53: 868 -
5a
Oshitari T.Mandai T. Synlett 2003, 2374 -
5b
The enantiomeric purity of 5 was determined to be >99% ee by HPLC [CHIRALCEL OD-H; hexane-i-PrOH = 9:1; λ = 220 nm; flow rate: 0.8 mL/min; t R(5) = 6.36 min; t R(ent-5) = 8.71 min].
-
5c
Compound 5 was also prepared from (S)-(+)-phenylglycine. See: Denis J.-N., Correa A., Greene A. E.; J. Org. Chem.; 1991, 56: 6939; Greene and co-workers reported therein that 5 was obtained in moderate yield with complete retention of enantiomeric purity by the addition of the crude Swern-oxidation product of N-Boc phenylglycinol to a large excess of vinylmagnesium bromide. Bhaskar et al. adopted this method for the preparation of compound 5 in their synthesis of 2, [2d] whose enantiomeric purity can be estimated below 50% ee in comparison with our own data. Ham and co-workers also synthesized 2 via an oxazoline derivative starting from N-benzoyl phenylglycinol. [2e] The optical rotation of 2 was in agreement with that reported in ref. 2d. These observations clearly imply that special care is required for employing easily racemizable phenylglycinal derivatives as a source of chiron approach.
- 6
Oshitari T.Akagi R.Mandai T. Synthesis 2004, 1325 - For preparation of 1,2-amino alcohol arrays from vinyl epoxides or 1,3-amino alcohol arrays from 4-pentene-1,3-diol carbonates via the intramolecular reaction of a nitrogen-containing nucleophile with a π-allylpalladium complex, see:
-
7a
Trost BM.Sudhakar AR. J. Am. Chem. Soc. 1987, 109: 3792 -
7b
Trost BM.Sudhakar AR. J. Am. Chem. Soc. 1988, 110: 7933 -
7c
Bando T.Harayama H.Fukazawa Y.Shiro M.Fugami K.Tanaka S.Tamaru Y. J. Org. Chem. 1994, 59: 1465 - For preparation of 1,2-diamine arrays from 5-vinyloxazol-idinones via intermolecular reaction of a nitrogen-containing nucleophile with a π-allylpalladium complex, see:
-
8a
Cook GR.Shanker PS.Pararajasingham K. Angew. Chem. Int. Ed. 1999, 38: 110 -
8b
Cook GR.Sankaranarayanan S. Org. Lett. 2001, 3: 3531 -
8c
Cook GR.Yu H.Sankaranarayanan S.Shanker PS. J. Am. Chem. Soc. 2003, 125: 5115 -
10a
Dunn PJ.Häner R.Rapoport H. J. Org. Chem. 1990, 55: 5017 -
10b
Seo R.Ishizuka T.Abdel-Aziz AA.-M.Kunieda T. Tetrahedron Lett. 2001, 42: 6353 -
10c
Katahira T.Ishizuka T.Matsunaga H.Kunieda T. Tetrahedron Lett. 2001, 42: 6319 - For recent reviews, see:
-
13a
Breit B.Seiche W. Synthesis 2001, 1 -
13b
Breit B. Acc. Chem. Res. 2003, 36: 264 - For syntheses of piperidines through Rh-catalyzed hydroformylation, see:
-
13c
Ojima I.Tzamarioudaki M.Eguchi M. J. Org. Chem. 1995, 60: 7078 -
13d
Ojima I.Iula DM.Tzamarioudaki M. Tetrahedron Lett. 1998, 39: 4599 -
13e
Ojima I.Vidal ES. J. Org. Chem. 1998, 63: 7999 - {[3,3′-di-tert-Butyl-2′-(diphenoxymethoxy)-5,5′-dimethoxybiphenyl-2-yl]oxy}dibenzo[d,f][1,3]dioxepine.
-
14a
Billig E,Abatjoglou AG, andBryant DR. inventors; U. S. Patent, 4668651. -
14b
Billig E,Abatjoglou AG, andBryant DR. inventors; U. S. Patent, 4769498. -
14c
Cuny GD.Buchwald SL. J. Am. Chem. Soc. 1993, 115: 2066
References and Notes
In our preliminary investigation, DMSO was proven to be more effective solvent than toluene, THF and DMF. In addition, we found that DBU, soluble in above solvents, was much superior to other bases such as NaH, t-BuOK and Cs2CO3.
11The reaction under heating at refluxing temperature in a flask overnight provided 4-phenyl-4-(3-aminopropion-amido)-3-tosylamino-1-butene as the sole product.
12After removal of ethylenediamine in vacuo, a mixture of the mono-N-Ts-protected 1,2-diamine and 2-imidazolidone was afforded, which was subjected to the next step without further purification.
15Five-membered N-Boc-enamide (2%) and five-membered N-Boc-aminals (5%) were also isolated after the treatment with CSA. N-Ts-enamide and N-Ts-aminals were not obtained at all.
16Compound 10: colorless foam; [α]D 22 -206.0 (c = 1.00, CHCl3). 1H NMR (CDCl3): δ = 1.21 (br s, 6.3 H), 1.41 (br s, 2.7 H), 1.77-1.85 (m, 1 H), 1.89-2.10 (br m, 1 H), 2.45 (s, 3 H), 3.87 (m, 1 H), 3.97 (d, J = 10.1 Hz, 1 H), 4.71 (br, 0.3 H), 4.78 (br, 0.7 H), 4.98 (br, 0.7 H), 5.15 (br, 0.3 H), 6.89-7.22 (m, 2 H), 7.28-7.38 (m, 5 H), 7.78 (m, 2 H). 13C NMR (CDCl3): δ = 21.6, 25.5, 26.1, 27.9, 28.2, 49.8, 57.5, 58.9, 77.2, 81.3, 81.5, 101.0, 126.2, 126.6, 127.0, 128.0, 128.5, 129.9, 137.3, 137.7, 138.1, 143.7, 152.1. Anal. Calcd for C23H28N2O4S: C, 64.46; H, 6.59; N, 6.54. Found: C, 64.37; H, 6.71; N, 6.54.
17In the absence of TBAI, the N-alkylation was very slow at 0 °C. Compound 12, however, was afforded in 81% yield at r.t. in 5 h with the significant loss of enantiomeric purity (77% ee), which was probably caused by the elimination-addition sequence of the N-2-methoxybenzyl-tert-butyl carbamoyl group.
18Compound 12: colorless foam; [α]D 21 -105.2 (c = 1.32, CHCl3). 1H NMR (CDCl3): δ = 1.19-1.70 (m, 21 H), 1.85 (br m, 1 H), 3.14 (br m, 1 H), 3.33 (br m, 1 H), 3.65 (s, 3 H), 3.75 (br m, 0.45 H), 3.99-4.10 (m, 1.65 H), 4.25 (br m, 0.45 H), 4.50 (br m, 0.45 H), 5.45 (br s, 0.9 H), 5.64 (br s, 0.1 H), 6.71 (m, 1 H), 6.86 (m, 1 H), 7.03 (m, 1 H), 7.12 (m, 1 H), 7.37-7.25 (m, 5 H). 13C NMR (CDCl3): δ = 22.4, 24.6, 28.2, 41.0, 41.6, 42.1, 55.1, 56.2, 57.0, 57.5, 77.2, 79.6, 109.8, 120.2, 126.4, 127.0, 128.0, 128.4, 140.2, 141.2, 155.9. Anal. Calcd for C29H40N2O5: C, 70.13; H, 8.12; N, 5.64. Found: C, 69.90; H, 8.28; N, 5.54. The enantiomeric purity of 12 was determined to be >99% ee by HPLC [CHIRALCEL OD; hexane-i-PrOH = 30:1; λ = 220 nm; flow rate: 1.0 mL/min; t R(12) = 6.8 min; t R(ent-12) = 11.0 min].
19(+)-CP-99,994 (1): 1H NMR (free base, CDCl3): δ = 1.40 (br d, J = 13.2 Hz, 1 H), 1.60 (m, 1 H), 1.76 (br s, 2 H), 1.93 (m, 1 H), 2.14 (br d, J = 13.1 Hz, 1 H), 2.76-2.83 (m, 2 H), 3.27 (m, 1 H), 3.41 (d, J = 13.8 Hz, 1 H), 3.44 (s, 3 H), 3.67 (d, J = 13.8 Hz, 1 H), 3.88 (d, J = 2.1 Hz, 1 H), 6.68 (br d, J = 8.2 Hz, 1 H), 6.80 (br t, J = 7.3 Hz, 1 H), 6.97 (dd, J = 1.5, 7.3 Hz, 1 H), 7.15 (dt, J = 1.5, 8.2 Hz, 1 H), 7.20-7.31 (m, 5 H). 13C NMR (free base, CDCl3): δ = 20.4, 28.2, 46.7, 47.8, 54.7, 54.8, 64.0, 109.8, 120.0, 126.3, 126.5, 127.8, 128.2, 129.6, 142.4, 157.6.
20Protection of C3-hydroxyl group as a benzoate was of choice for the subsequent hydroformylation.
21Compound 13: colorless viscous oil; [α]D 24 -152.3 (c = 1.02, CHCl3). 1H NMR (CDCl3): δ = 1.25 (br s, 6 H), 1.40-1.55 (br m, 3 H), 2.05-2.25 (m, 1 H), 2.40 (m, 1 H), 4.83 (br m, 0.33 H), 4.93 (br m, 0.67 H), 5.40 (br m, 0.33 H), 5.46-5.63 (m, 1.67 H), 7.00-7.35 (m, 6 H), 7.40 (m, 2 H), 7.55 (m, 1 H), 7.90 (m, 2 H). 13C NMR (CDCl3): δ = 23.7, 24.0, 27.9, 28.2, 56.0, 57.3, 69.2, 81.3, 100.4, 126.1, 126.4, 127.5, 127.6, 128.0, 128.35, 128.38, 129.69, 129.71, 129.8, 133.1, 138.6, 152.3, 165.6. Anal. Calcd for C23H25NO4: C, 72.80; H, 6.64; N, 3.69. Found: C, 72.76; H, 6.84; N, 3.66.
22Five-membered aminals (4%) were also isolated.
23Compound 14: colorless viscous oil; [α]D 22 +56.7 (c = 1.3, CHCl3) {Lit. [1g] [α]D 15 +53.77 (c = 1.0, CHCl3); Lit. [2d] [α]D 25 +38.30 (c = 1.92, CHCl3)}. 1H NMR (CDCl3): δ = 1.37 (s, 9 H), 1.54-1.62 (m, 1 H), 1.69 (m, 1 H), 1.76-1.87 (m, 3 H), 3.04 (m, 1 H), 4.01 (dd, J = 5.8, 12.8 Hz, 1 H), 4.09 (m, 1 H), 5.32 (d, J = 5.8 Hz, 1 H), 7.27 (m, 1 H), 7.37-7.32 (m, 2 H), 7.45 (m, 2 H). 13C NMR (CDCl3): δ = 23.1, 27.7, 28.3, 39.5, 59.3, 70.1, 79.9, 127.2, 128.4, 138.5, 155.4. Anal. Calcd for C16H23NO3: C, 69.29; H, 8.36; N, 5.05. Found: C, 69.21; H, 8.59; N, 4.77. The enantiomeric purity of 14 was determined to be >99% ee by HPLC [CHIRALCEL OJ-H; hexane-i-PrOH = 9:1; λ = 220 nm; flow rate: 1.0 mL/min; t R(14) = 4.80 min; t R(ent-14) = 5.75 min].
24Compound 15: colorless oil; [α]D 23 +43.3 (c = 1.60, CHCl3) {Lit. [1g] [α]D 28 +36.90 (c = 1.0, CHCl3)}. 1H NMR (CDCl3): δ = 1.46 (s, 9 H), 1.58-1.76 (m, 2 H), 1.94-2.05 (m, 2 H), 2.77 (ddd, J = 3.3, 13.4, 13.4 Hz, 1 H), 3.88 (m, 1 H), 3.95 (dd, J = 3.3, 13.4 Hz, 1 H), 4.71 (d, J = 12.5 Hz, 1 H), 4.75 (d, J = 12.5 Hz, 1 H), 5.70 (br s, 1 H), 7.25-7.36 (m, 3 H), 7.54 (br s, 1 H), 7.56 (br s, 1 H), 7.71 (br s, 2 H), 7.78 (br s, 1 H). 13C NMR (CDCl3): δ = 24.2, 25.8, 28.4, 39.2, 55.4, 69.1, 78.7, 80.1, 121.4 (m), 123.3 (q, J = 272 Hz), 127.0, 127.2, 128.28, 128.32, 131.6 (q, J = 32.9 Hz), 138.0, 141.0, 155.3. The enantiomeric purity of 15 was determined to be >99% ee by HPLC [CHIRALPAK IA; hexane-i-PrOH = 30:1; λ = 220 nm; flow rate: 0.3 mL/min; t R(15)= 14.1 min; t R(ent- 15) = 16.6 min)].
25L-733,060 (2): 1H NMR (free base, CDCl3): δ = 1.53 (m, 1 H), 1.66-1.75 (m, 1 H), 1.88 (m, 1 H), 2.22 (br d, J = 14.0 Hz, 1 H), 2.85 (ddd, J = 3.1, 12.5, 12.5 Hz, 1 H), 3.29 (m, 1 H), 3.68 (br m, 1 H), 3.85 (d, J = 1.2 Hz, 1 H), 4.13 (d, J = 12.5 Hz, 1 H), 4.52 (d, J = 12.5 Hz, 1 H), 7.25-7.29 (m, 1 H), 7.30-7.35 (m, 2 H), 7.35-7.39 (m, 2 H), 7.44 (br s, 2 H), 7.69 (br s, 1 H). 13C NMR (free base, CDCl3): δ = 20.5, 28.4, 47.1, 64.2, 70.0, 77.3, 121.1 (hept, J = 4.1 Hz), 123.2 (q, J = 271 Hz), 126.7, 127.0, 127.4 (m), 128.1, 131.2 (q, J = 32.9 Hz), 141.2, 141.9.