Synlett 2007(11): 1715-1719  
DOI: 10.1055/s-2007-984512
LETTER
© Georg Thieme Verlag Stuttgart · New York

Construction of Extended π-Conjugation Systems Utilizing Novel Multicarbene Complexes of Titanium

Akitoshi Ogata, Shintaro Anno, Takeshi Kurata, Song Xu, Akira Tsubouchi, Takeshi Takeda*
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
Fax: +81(42)3887034; e-Mail: takeda-t@cc.tuat.ac.jp;
Further Information

Publication History

Received 10 April 2007
Publication Date:
25 June 2007 (online)

Abstract

Titanium-multicarbene complexes, namely organo­titanium species having a plurality of titanium-carbene complex substructures, were easily prepared by the reaction of aromatic ­nuclei possessing spatially separated thioacetal moieties with the ­titanocene(II) reagent Cp2Ti[P(OEt)3]2. Reaction of these multi­carbene complexes with aromatic ketones gave various highly conjugated compounds in good yields.

    References and Notes

  • 1a Takeda T. Bull. Chem. Soc. Jpn.  2005,  78:  195 
  • 1b Takeda T. Chem. Rec.  2007,  7:  24 
  • 2 Takeda T. Tsubouchi A. In Modern Carbonyl Olefination   Takeda T. Wiley-VCH; Weinheim: 2004.  p.151 
  • 3a Anderson DM. Bristow GS. Hitchcock PB. Jasim HA. Lappert MF. Skelton BW. J. Chem. Soc., Dalton Trans.  1987,  2843 
  • 3b Fuchibe K. Iwasawa N. Chem. Eur. J.  2003,  9:  905 
  • 3c Lalov AV. Egorov MP. Nefedov OM. Cherkasov VK. Ermolaev NL. Piskunov AV. Russ. Chem. Bull.  2005,  54:  807 
  • 4 Martin HC. James NH. Aitken J. Gaunt JA. Adams H. Haynes A. Organometallics  2003,  22:  4451 
  • 5a Dötz KH. Tomuschat P. Nieger M. Chem. Ber./Recl.  1997,  130:  1605 
  • 5b Tomuschat P. Kröner L. Steckhan E. Nieger M. Dötz KH. Chem. Eur. J.  1999,  5:  700 
  • 5c Fernández I. Sierra MA. Mancheño MJ. Gómez-Gallego M. Ricart S. Organometallics  2001,  20:  4304 
  • For examples, see:
  • 6a Meier H. Angew. Chem., Int. Ed. Engl.  1992,  31:  1399 
  • 6b Adam D. Closs F. Frey T. Funhoff D. Haarer D. Ringsdorf H. Schuhmacher P. Siemensmeyer K. Phys. Rev. Lett.  1993,  70:  457 
  • 6c Adam D. Schuhmacher P. Simmerer J. Häussling L. Siemensmeyer K. Etzbach KH. Ringsdorf H. Haarer D. Nature (London)  1994,  371:  141 
  • 6d Tanaka H. Tokito S. Taga Y. Okada A. Chem. Commun.  1996,  2175 
  • 6e Jiang D.-L. Aida T. Nature (London)  1997,  388:  454 
  • 6f Kraft A. Grimsdale AC. Holmes AB. Angew. Chem. Int. Ed.  1998,  37:  402 
  • 6g Martin RE. Diederich F. Angew. Chem. Int. Ed.  1999,  38:  1350 
  • 6h Friend RH. Gymer RW. Holmes AB. Burroughes JH. Marks RN. Taliani C. Bradley DDC. Dos Santos DA. Brédas JL. Lögdlund M. Salaneck WR. Nature (London)  1999,  397:  121 
  • 6i Balzani V. Ceroni P. Gestermann S. Kauffmann C. Gorka M. Vögtle F. Chem. Commun.  2000,  853 
  • 6j Segura JL. Martín N. J. Mater. Chem.  2000,  10:  2403 
  • 6k Fechtenkötter A. Tchebotareva N. Watson M. Müllen K. Tetrahedron  2001,  57:  3769 
  • 6l Kwok CC. Wong MS. Macromolecules  2001,  34:  6821 
  • 6m Li CL. Shien SJ. Lin SC. Liu RS. Org. Lett.  2003,  5:  1131 
  • 6n Takahashi M. Odagi T. Tomita H. Oshikawa T. Yamashita M. Tetrahedron Lett.  2003,  44:  2455 
  • 6o Kan Y. Wang L. Duan L. Hu Y. Wu G. Qiu Y. Appl. Phys. Lett.  2004,  84:  1513 
  • 6p Wex B. Kaafarani BR. Schroeder R. Majewski LA. Burckel P. Grell M. Neckers DC. J. Mater. Chem.  2006,  16:  1121 
  • 6q Padmaperuma AB. Sapochak LS. Burrows PE. Chem. Mater.  2006,  18:  2389 
  • 6r Saito G. Yoshida Y. Bull. Chem. Soc. Jpn.  2007,  80:  1 
  • 7a Fischer EO. Dötz KH. J. Organomet. Chem.  1972,  36:  C4 
  • 7b Connor JA. Rose PD. Turner RM. J. Organomet. Chem.  1973,  55:  111 
  • 7c Connor JA. Day JP. Turner RM. J. Chem. Soc., Dalton Trans.  1976,  108 
  • 7d Nakamura E. Tanaka K. Aoki S. J. Am. Chem. Soc.  1992,  114:  9715 
  • 7e Mak CC. Chan KS. J. Chem. Soc., Perkin Trans. 1  1993,  2143 
  • 7f Mak CC. Tse MK. Chan KS. J. Org. Chem.  1994,  59:  3585 
  • 7g Scharrer E. Brookhart M. J. Organomet. Chem.  1995,  497:  61 
  • 7h Merlic CA. Albaneze J. Tetrahedron Lett.  1995,  36:  1007 
  • 7i Parisi M. Solo A. Wulff WD. Guzei IA. Rheingold AL. Organometallics  1998,  17:  3696 
  • 7j Takeda T. Nozaki N. Fujiwara T. Tetrahedron Lett.  1998,  39:  3533 
  • 7k Iwasawa N. Saitou M. Kusama H. J. Organomet. Chem.  2001,  617:  741 
  • 7l Buck RT. Coe DM. Drysdale MJ. Ferris L. Haigh D. Moody CJ. Pearson ND. Sanghera JB. Tetrahedron: Asymmetry  2003,  14:  791 
  • 8a

    The titanacycle 6 was isolated by column chromatography over alumina gel (hexane-EtOAc, 98:2) under N2, mp 85-87 °C. 1H NMR (300 MHz, CDCl3): δ = 4.88 (s, 2 H), 5.88 (s, 5 H), 6.44 (s, 5 H), 7.03-7.28 (m, 14 H). 13C NMR (75 MHz, CDCl3): δ = 58.7, 114.6, 115.8, 123.0, 124.1, 125.0, 125.6, 128.7, 142.4, 146.1. IR (KBr): ν = 3057, 2914, 1579, 1476, 1439, 1085, 1022, 824, 739, 690 cm-1.
    Lappert and co-workers reported the preparation of 2-titanaindane [8b] and meso-1,3-bis(trimethylsilyl)-2-titanaindane [8c] complexes. The NMR signals of the Cp rings of the latter titanacycle occur as two singlets at δ = 4.46 and 5.23 ppm. The spectrum of 6 shows the protons of two Cp rings as two singlets at δ = 5.88 and 6.44 ppm, suggesting that 6 has the meso configuration.

  • 8b Bristow GS. Lappert MF. Martin TR. Atwood JL. Hunter WF. J. Chem. Soc., Dalton Trans.  1984,  399 
  • 8c Lappert MF. Raston CL. Skelton BW. White AH. J. Chem. Soc., Dalton Trans.  1984,  893 
  • For recent examples, see:
  • 10a Seferos DS. Banach DA. Alcantar NA. Israelachvili JN. Bazan GC. J. Org. Chem.  2004,  69:  1110 
  • 10b Liu Z.-Q. Fang Q. Cao D.-X. Wang D. Xu G.-B. Org. Lett.  2004,  6:  2933 
  • 10c Langa F. Gomez-Escalonilla MJ. Rueff J.-M. Figueira Duarte TM. Nierengarten J.-F. Palermo V. Samorì P. Rio Y. Accorsi G. Armaroli N. Chem. Eur. J.  2005,  11:  4405 
  • 10d Kim HM. Yang WJ. Kim CH. Park W.-H. Jeon S.-J. Cho BR. Chem. Eur. J.  2005,  11:  6386 
  • 10e Woo HY. Liu B. Kohler B. Korystov D. Mikhailovsky A. Bazan GC. J. Am. Chem. Soc.  2005,  127:  14721 
  • 10f Mcllroy SP. Cló E. Nikolajsen L. Frederiksen PK. Nielsen CB. Mikkelsen KV. Gothelf KV. Ogilby PR. J. Org. Chem.  2005,  70:  1134 
  • 10g Yao S. Belfield KD. J. Org. Chem.  2005,  70:  5126 
  • 10h Hwu JR. Chuang K.-S. Chuang SH. Tsay S.-C. Org. Lett.  2005,  7:  1545 
  • 10i Stuhr-Hansen N. Sørensen JK. Moth-Poulsen K. Christensen JB. Bjørnholm T. Nielsen MB. Tetrahedron  2005,  61:  12288 
  • 10j Kim O.-K. Je J. Melinger JS. J. Am. Chem. Soc.  2006,  128:  4532 
  • 10k Iwaura R. Hoeben FJM. Masuda M. Schenning APHJ. Meijer EW. Shimizu T. J. Am. Chem. Soc.  2006,  128:  13298 
  • 11a Honor L. Hoffmann H. Klink W. Ertel H. Toscano VG. Chem. Ber.  1962,  95:  581 
  • 11b Kauffman JM. Moyna G. J. Org. Chem.  2003,  68:  839 
  • 11c Plater MJ. Jackson T. Tetrahedron  2003,  59:  4673 
  • 12a Itami K. Tonogaki K. Ohashi Y. Yoshida J. Org. Lett.  2004,  6:  4093 
  • 12b Itami K. Ohashi Y. Yoshida J. J. Org. Chem.  2005,  70:  2778 
  • 12c Itami K. Yoshida J. Bull. Chem. Soc. Jpn.  2006,  79:  811 
  • 12d Itami K. Yoshida J. Chem. Eur. J.  2006,  12:  3966 
9

General Procedure
Cp2TiCl2 (398 mg, 1.6 mmol), magnesium turnings (43 mg, 1.76 mmol), and finely powdered 4 Å MS (128 mg) were placed in a flask and dried by heating with a heat gun in vacuo (2-3 mmHg). After cooling, THF (2.4 mL) and P(OEt)3 (0.55 mL, 3.2 mmol) were added successively with stirring under argon. During the addition, the reaction mixture was cooled in a water bath so that the temperature was maintained between 20 °C and 30 °C. After stirring for 3 h at 25 °C, a THF (1.0 mL) solution of the thioacetal 3c (108 mg, 0.2 mmol) was added. Then, a THF (4.0 mL) solution of 7b (261 mg, 0.8 mmol) was added dropwise over 10 min and the reaction mixture was stirred for 3 h under reflux. The reaction was quenched by addition of 1 M NaOH and the insoluble materials were filtered off through Celite® and washed with CHCl3. The layers were separated, and the aqueous layer was extracted with CHCl3. After the combined organic extracts were dried with Na2SO4 and concentrated, the remaining triethyl phosphate, formed by the oxidation of triethyl phosphite, was removed by azeotropic distillation with MeOH. Purification of the residue by PTLC on silica gel (hexane-CHCl3, 96:4) gave 8h as yellow crystals (102 mg, 64%), mp 130-132 °C. 1H NMR (300 MHz, CDCl3): δ = 0.96 (t, J = 7.4 Hz, 6 H), 0.99 (t, J = 7.4 Hz, 6 H), 1.41-1.59 (m, 8 H), 1.67-1.85 (m, 8 H), 3.94 (t, J = 6.2 Hz, 4 H), 3.96 (t, J = 6.1 Hz, 4 H), 6.70 (s, 2 H), 6.75-6.89 (m, 12 H), 7.07 (d, J = 8.4 Hz, 4 H), 7.20 (d, J = 8.4 Hz, 4 H). 13C NMR (75 MHz, CDCl3): δ = 13.8, 13.9, 19.2, 19.3, 31.3, 31.4, 67.6, 67.7, 114.1, 114.4, 125.8, 128.8, 129.0, 131.6, 136.0, 136.4, 141.6, 158.5, 158.8. IR (KBr): ν = 2956, 2932, 2871, 1604, 1570, 1509, 1467, 1390, 1284, 1247, 1175, 1146, 1111, 1070, 1027, 1010, 973, 834, 813, 617 cm-1. Anal. Calcd for C50H58O4: C, 83.06; H, 8.09. Found: C, 82.82; H, 8.12.