RSS-Feed abonnieren
DOI: 10.1055/s-2007-984899
Phenanthridinium as an Artificial DNA Base: Comparison of Two Alternative Acyclic 2′-Deoxyribose Substitutes
Publikationsverlauf
Publikationsdatum:
17. Juli 2007 (online)
Abstract
(S)-1-Amino-2,3-propanediol and (2S,3S)-2-amino-1,3-butanediol have been used as two different acyclic substitutes for 2′-deoxyriboside in order to synthetically incorporate the phenanthridinium chromophore of ethidium as an artificial DNA base. The comparison of the optical properties of one representative duplex bearing phenanthridinium attached to the two alternative acyclic linkers does not exhibit significant differences.
Key words
DNA - ethidium - fluorescence - oligonucleotide - phenanthridinium
- Early reviews:
-
1a
Morgan AR.Lee JS.Pulleyblank DE.Murray NL.Evans DH. Nucleic Acids Res. 1979, 7: 547 -
1b
Morgan AR.Evans DH.Lee JS.Pulleyblank DE. Nucleic Acids Res. 1979, 7: 571 -
2a
Gaugain B.Barbet J.Oberlin R.Roques BP.Le Pecq J.-B. Biochemistry 1978, 17: 5071 -
2b
Gaugain B.Barbet J.Capelle N.Roques BP.Le Pecq J.-B. Biochemistry 1978, 17: 5078 -
2c
Fechter EJ.Olenyuk B.Dervan PB. Angew. Chem. Int. Ed. 2004, 43: 3591 -
3a
Brun AM.Harriman A. J. Am. Chem. Soc. 1992, 114: 3656 -
3b
Atherton SJ.Beaumont PC. J. Phys. Chem. 1995, 99: 12025 -
3c
Kelley SO.Holmlin RE.Stemp EDA.Barton JK. J. Am. Chem. Soc. 1997, 119: 9861 -
3d
Hall DB.Kelley SO.Barton JK. Biochemistry 1998, 37: 15933 -
3e
Kononov AI.Moroshkina EB.Tkachenko NV.Lemmetyinen H. J. Phys. Chem. B 2001, 105: 535 -
3f
Henderson PT.Boone E.Schuster GB. Helv. Chim. Acta 2002, 85: 135 -
3g
Li H.Peng X.Seela F. Bioorg. Med. Chem. Lett. 2004, 14: 6031 -
4a
Fromherz P.Rieger B. J. Am. Chem. Soc. 1986, 108: 5361 -
4b
Atherton SJ.Beaumont PC. J. Phys. Chem. 1987, 91: 3993 -
4c
Dunn DA.Lin VH.Kochevar IE. Biochemistry 1992, 31: 11620 -
5a
Kelley SO.Barton JK. Chem. Biol. 1998, 5: 413 -
5b
Wan C.Fiebig T.Kelley SO.Treadway CR.Barton JK.Zewail AH. Proc. Natl. Acad. Sci. U. S. A. 1999, 96: 6014 -
6a
Amann N.Huber R.Wagenknecht H.-A. Angew. Chem. Int. Ed. 2004, 43: 1845 -
6b
Valis L.Wang Q.Raytchev M.Buchvarov I.Wagenknecht H.-A.Fiebig T. Proc. Natl. Acad. Sci. U. S. A. 2006, 103: 10192 - 7
Valis L.Amann N.Wagenknecht H.-A. Org. Biomol. Chem. 2005, 3: 36 -
8a
Luedtke NW.Liu Q.Tor Y. Chem. Eur. J. 2005, 11: 495 -
8b
Kubař T.Hanus M.Ryjáček F.Hobza P. Chem. Eur. J. 2006, 12: 280 - 9
Huber R.Amann N.Wagenknecht H.-A. J. Org. Chem. 2004, 69: 744 - 10
Amann N.Wagenknecht H.-A. Tetrahedron Lett. 2003, 44: 1685 - 11
Fukui K.Iwane K.Shimidzu T.Tanaka K. Tetrahedron Lett. 1996, 37: 4983 - 12
Asanuma H.Kashida H.Liang X.Komiyama M. Chem. Commun. 2003, 1536 - 13
Kashida H.Tanaka M.Baba S.Sakomoto T.Kawai G.Asanuma H. Chem. Eur. J. 2006, 12: 777 - 17
Azhayev AV.Antopolsky ML. Tetrahedron 2001, 57: 4977 - 23 For the extinction coefficients of the oligonucleotides at 260 nm, see:
Puglisi JD.Tinoco I. Meth. Enzymol. 1989, 180: 304 -
27a
Waring MJ. J. Mol. Biol. 1965, 13: 269 -
27b
LePecq J.-B.Paleotti C. J. Mol. Biol. 1967, 27: 87 -
27c
Olmsted J.Kearns DR. Biochemistry 1977, 16: 3647 -
27d
Letsinger RL.Schott ME. J. Am. Chem. Soc. 1981, 103: 7394 - 28
Cosa G.Foscaneanu K.-S.McLean JRN.McNamee JP.Scaiano JC. Photochem. Photobiol. 2001, 73: 585 -
29a
Wagner C.Wagenknecht H.-A. Org. Lett. 2006, 8: 4191 -
29b
Wanninger C.Wagenknecht H.-A. Synlett 2006, 2051 - 30
Dahl KS.Pradi A.Tinoco I. Biochemistry 1982, 21: 2730 - 31
Lamos ML.Turner DH. Biochemistry 1985, 24: 2819
References and Notes
The product 2 was co-evaporated three times with toluene and dried under high vacuum. Experimental data of 2: R f 0.60 (CH2Cl2-MeOH, 10:2). 1H NMR (250 MHz, DMSO-d 6): δ = 8.81 (d, J = 8.5 Hz, 1 H, NH), 4.70 (m, 2 H, CHOH, OH), 3.74 (m, 1 H, CHNH), 3.67-3.71 (m, 1 H, OH), 3.53-3.60 (m, 1 H, CH 2OH), 3.46-3.48 (m, 1 H, CH 2OH), 0.85 (d, J = 8.3 Hz, 3 H, Me).
15The product 3 was purified by flash chromatography (silica gel; CH2Cl2, 0.1% pyridine, 0-2% MeOH). Experimental data of 3: R f 0.17 (CH2Cl2-MeOH, 100:0.5). 1H NMR (300 MHz, DMSO-d 6): δ = 9.25 (d, J = 8.2 Hz, 1 H, NH), 7.21-7.40, 6.86-6.89 (m, 13 H, DMT-H), 4.70 (m, 1 H, CHOH), 3.86-3.95 (m, 2 H, OH, NHCH), 3.73 (s, 6 H, OMe), 3.14-3.18 (dd, J = 3.6, 9.3 Hz, 1 H, CH 2ODMT), 2.94-2.99 (m, 1 H, CH 2ODMT), 0.93 (d, J = 6.0 Hz, 3 H, Me). 13C NMR (75 MHz, DMSO-d 6): δ = 157.9, 156.7, 156.3 (q, 2 J CF = 36 Hz), 149.5, 144.8, 136.0, 135.6, 135.4, 129.6, 127.7, 127.5, 126.5, 123.8, 117.9, 114.1 (q, 1 J CF = 288 Hz, CF3), 113.0, 85.1 (OCPh3), 64.7 (CHOH), 62.4 (CH2ODMT), 56.0 (NHCH), 54.9 (OMe), 20.0 (Me). MS (ESI): m/z (%) = 526.0(8) [M + Na]+, 303.3 (100) [DMT]+, 1028.9 (4) [2 × M + Na]+. C27H28F3NO5: 503.51.
16The product 4 was co-evaporated twice with Et2O and dried under high vacuum. Experimental data of 4: R f 0.24 (CH2Cl2-MeOH, 20:1). 1H NMR (300 MHz, DMSO-d 6): δ = 7.19-7.41, 6.83-6.92 (m, 13 H, DMT-H), 4.43 (m, 1 H, CHOH), 3.73 (s, 6 H, OMe), 3.63 (m, 1 H, OH), 2.99-3.04 (m, 1 H, NH2CH), 2.81-2.85 (m, 1 H, CH 2ODMT), 2.58 (m, 1 H, CH 2ODMT), 0.95 (d, J = 6.3 Hz, 3 H, Me). 13C NMR (75 MHz, DMSO-d 6): δ = 157.9, 145.1, 135.9, 135.8, 129.6, 127.7, 126.4, 113.0, 85.1 (OCPh3), 66.6 (CHOH), 65.1 (CH2ODMT), 56.5 (NH2CH), 54.9 (OMe), 20.1 (Me). MS (ESI): m/z (%) = 430.1 (16) [M + Na]+, 303.3 (100) [DMT]+, 815.0 (8) [2 × M + H]+. C25H29NO4: 407.50.
18The product 6 was purified by flash chromatography (silica gel; CH2Cl2-MeOH, 100:3, 0.1% pyridine; then CH2Cl2-MeOH, 10:3, 0.1% pyridine). Experimental data of 6: R f 0.58 (CH2Cl2-MeOH, 20:3). 1H NMR (300 MHz, DMSO-d 6): δ = 10.67 (s, 1 H, NH, 3-alloc), 10.38 (s, 1 H, NH, 8-alloc), 9.08 (d, 3 J = 9.3 Hz, 1 H, H-1), 9.02 (d, 3J = 9.1 Hz, 1 H, H-10), 8.57 (s, 1 H, H-4), 8.26 (m, 1 H, H-9), 8.10 (dd, 3 J = 9.1 Hz, 4 J = 1.1 Hz, 1 H, H-2), 7.82-7.71 (m, 6 H, 6-Ph, H-7), 7.39-7.20 (m, 9 H, ArH, DMT-H), 6.88 (m, 4 H, ArH, DMT-H), 5.99 (m, 2 H, CH2=CH, 3- and 8-alloc), 5.37 (m, 1 H, CH 2=CH, trans, 3-alloc), 5.30 (m, 1 H, CH 2=CH, trans, 8-alloc), 5.25 (m, 1 H, CH 2=CH, cis, 3-alloc), 5.21 (m, 1 H, CH 2=CH, cis, 8-alloc), 4.67 (d, 3 J = 5.5 Hz, 2 H, OCH2, 3-alloc), 4.57 (d, 3 J = 5.5 Hz, 2 H, OCH2, 8-alloc), 4.73 (m, 1 H, CHOH), 4.63 (m, 2 H, H-1′), 3.72 (s, 6 H, OMe), 3.08 (m, 1 H, CH 2ODMT, NHCH), 2.80 (m, 2 H, H-3′), 2.58 (m, 1 H, CH 2ODMT), 2.09 (m, 2 H, H-2′), 0.93 (d, J = 6.3 Hz, 3 H, Me). MS (ESI): m/z (%) = 901.4 (100) [M]+, 599.3 (15) [M + H - DMT]+, 303.3 (33) [DMT]+, 468.3 (35). C55H57N4O8 +: 902.06.
19The product 7 was purified by flash chromatography (silica gel; CH2Cl2-MeOH, 100:5, 0.1% pyridine; then EtOAc-MeOH-H2O, 6:2:2, 0.1% pyridine). Experimental data of 7: R f 0.60 (EtOAc-MeOH-H2O, 6:2:2). 1H NMR (300 MHz, DMSO-d 6): δ = 8.67 (d, 3 J = 9.1 Hz, 1 H, H-1), 8.62 (d, 3 J = 9.3 Hz, 1 H, H-10), 7.67 (m, 5 H, 6-Ph), 7.51 (m, 2 H, H-9, H-4), 7.36-7.20 (m, 10 H, ArH, DMT-H, H-2), 6.86 (m, 4 H, ArH, DMT-H), 6.38 (s, 2 H, 3-NH2), 6.26 (s, 1 H, H-7), 5.96 (s, 2 H, 8-NH2), 4.50 (m, 3 H, H-1′, CHOH), 3.72 (s, 6 H, OMe), 3.27 (m, 1 H, NH2CH), 3.00 (m, 2 H, H-3′), 2.79 (m, 1 H, CH 2ODMT), 2.63 (m, 1 H, CH 2ODMT), 2.25 (m, 2 H, H-2′), 0.92 (d, J = 6.3 Hz, 3 H, Me). MS (ESI): m/z (%) = 733.4 (100) [M]+, 431.3 (13) [M + H - DMT]+, 303.3 (85) [DMT]+. C47H49N4O4 +: 733.92.
20The product 8 was dried under high vacuum. Due to the high lability of the trifluoroacetyl groups the structure was confirmed only by MS. Experimental data of 8: MS (ESI): m/z (%) = 1021.3 (100) [M]+, 303.3 (38) [DMT]+. C53H46F9N4O7 +: 1021.94.
21The product 9 was dried under high vacuum. Due to the observed high hydrolytic lability the structure was confirmed only by MS. Experimental data of 9: MS (ESI): m/z (%) = 1221.4 (100) [M]+, 303.3 (39) [DMT]+. C62H63F9N6O8P+: 1222.16.
22An extended coupling time (1 h instead of 1.5 min for standard couplings), a higher phosphoramidite concentration (0.2 M instead of 0.067 M), and three coupling cycles interrupted by washing steps were necessary to achieve nearly quantitative coupling.
24The extinction coefficients of phenanthridinium at 260 nm is 45.200 M-1cm-1.9
25Experimental data of ssDNA1: ε260 = 200.700 M-1cm-1. MS (MALDI-TOF): m/z calcd for C181H225N64O98P16: 5359; found: 5359.
26Experimental data of ssDNA2: ε260 = 200.700 M-1cm-1. MS (MALDI-TOF): m/z calcd for C182H228N64O98P16: 5374; found: 5374.
32UV-VIS spectra and melting temperatures were measured on a Cary 100 (Varian) instrument. Fluorescence spectra were recorded on a Fluoromax-3 (Jobin-Yvon) equipment with a bandpass of 2 nm (excitation and emission) and correction for intensity and for Raman emission from the buffer solution. ESI-MS measurement was performed on a TSQ 7000 (Finnigan) instrument, MALDI-TOF MS on a Bruker Biflex III spectrometer (A = 50 mg/mL 3-hydroxypicolinic acid in MeCN-H2O, B = 50 mg/mL diammonium citrate, A:B = 9:1 for the matrix formation). C18-RP HPLC columns (300 Å) were from supplied by Supelco. The oligonucleotides were prepared on an Expedite 8909 DNA synthesizer (ABI) using CPG (1 µmol) and chemicals from ABI and Glen Research. The trityl-off oligonucleotides were cleaved and deprotected by treatment with concd NH4OH at 60 °C for 10 h (unmodified oligonucleotides), for 5.5 h (modified oligonucleotides), dried and purified by HPLC on RP-C5 (300 Å, Supelco) using the following conditions: A = NH4OAc buffer (50 mM), pH = 6.5; B = MeCN; gradient = 0-15% B (for the unmodified oligonucleotides) and 0-30% B (for the modified oligonucleotides) over 60 min. Duplexes were formed by heating to 90 °C (10 min), followed by slow cooling.