RSS-Feed abonnieren
DOI: 10.1055/s-2007-986645
An Efficient Synthetic Route to N-Glycosylamino Acids Using N α-Fmoc-Asp/Glu-5-oxazolidinone as Internal Protection
Publikationsverlauf
Publikationsdatum:
12. September 2007 (online)
Abstract
A new facile synthetic route to prepare N-glycosylamino acids in fewer steps is reported. 5-Oxazolidinone served as an effective protecting moiety for N α-Fmoc-Asp/Glu and after glycosylation, the ring opening resulted in free α-carboxylic acid, which can be directly used to extend the chain to obtain N-glycopeptides. Both the minimum number of steps as well as circumvention of orthogonal protection strategy leads to a cost-effective route for their synthesis. This protocol can be easily scaled up to prepare N-glycosylated Asn/Gln acids in large quantities in fairly good yields.
Key words
5-oxazolidinone - glycosyl amine - protecting group - N-glycosylamino acid - coupling agent - building-block strategy
- 1
Hojo H.Nakahara Y. Curr. Protein Pept. Sci. 2000, 1: 23 -
2a
Polt R.Palian MM. Drugs Future 2001, 26: 561 -
2b
Polt R.Porreca F.Szabo LZ.Bilsky EJ.Davis P.Abbruscato TJ.Davis TP.Horvath R.Yamamura HI.Hruby VJ. Proc. Natl. Acad. Sci. U.S.A. 1994, 91: 7114 - 3
Middagh CR.Litman GW. J. Biol. Chem. 1987, 262: 3671 - 4
Nomoto M.Yamaoa K.Haga M.Hayashi M. J. Pharm. Sci. 1998, 87: 326 -
5a
Andreotti AH.Kahne D. J. Am. Chem. Soc. 1993, 115: 3352 -
5b
Laczko I.Hollosi M.Urge L.Urgen KE.Weiner DB.Mantzsch HH.Thurin J.Otvos L. Biochemistry 1992, 31: 4282 -
6a
Hojo H.Nakahara Y. Pept. Sci. 2007, 88: 308 -
6b
Haase C.Seitz O. Top. Curr. Chem. 2007, 267: 1 -
6c
Liu L.Bennett CS.Wong C.-H. Chem. Commun. 2006, 21 - 7
Cohen-Anisfield ST.Lansbury PT. J. Am. Chem. Soc. 1993, 115: 10531 - 8
Wong SY.Guile GR.Rademacher TW.Dwek RA. Glycoconjugate J. 1993, 10: 227 -
9a
Meldal M. Curr. Opin. Struct. Biol. 1994, 4: 710 -
9b
Meldal M.Bock K. Glycoconjugate J. 1994, 11: 59 - 10
Anisfeld ST.Lansbury PT. J. Org. Chem. 1990, 55: 5560 -
11a
Likhosherstov L.Novikova O.Derveitskaja VA.Kochetkov NK. Carbohydr. Res. 1986, 146: C1 -
11b
Corey EJ.Suggs JW. J. Org. Chem. 1973, 38: 3234 - For similar applications of oxazolidinones in the synthesis of 2,3-diaminopropionic acid (2,3-Dap) and 2,4-diamino-butanoic acid (2,4-Dab). See:
-
12a
Teng H.He Y.Wu L.Su J.Feng X.Qui G.Liang S.Hu X. Synlett 2006, 877 -
12b
Ramanarao RV.Tantry SJ.Sureshbabu VV. Synth. Commun. 2006, 36: 2912 -
12c
Teng H.Jiang Z.Wu L.Su J.Feng X.Qiu G.Liang S.Hu X. Synth. Commun. 2006, 36: 3803 - For an efficient synthesis of Fmoc-amino acid-5-oxa-zolidinones employing a rapid protocol under microwave irradiation, see:
-
13a
Tantry SJ. .Sureshbabu VV. Tetrahedron Lett. 2002, 43: 9461 -
13b For further optimized reaction conditions using MeCN as a solvent, see:
Govender T.Arvidsson PI. Tetrahedron Lett. 2006, 47: 1691 - 14
Scholtz JM.Bartlett PA. Synthesis 1989, 131 - 15
Deng S.Gangadharmath U.Chang CWT. J. Org. Chem. 2006, 71: 5179 -
16a
Thiem J.Wiemann T. Angew. Chem., Int. Ed. Engl. 1990, 29: 80 -
16b
Ameijde J.Albada HB.Liskamp RMJ. J. Chem. Soc., Perkin Trans. 1 2002, 1042
References and Notes
Typical Procedure for the Synthesis of Glycosylated
N
α
-Fmoc-Asp/Glu-5-oxazolidinones
To a solution of Fmoc-Asp/Glu-5-oxazolidinone (10 mmol) in 10 mL of THF was added 1-amino β-glucose (10 mmol) in THF (40 mL), HBTU (10 mmol), and DIPEA (11 mmol), and stirred at r.t. for about 30 min. The solvent was evaporated under reduced pressure and the residue was diluted with H2O (15 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layer was washed with 10% citric acid (3 × 10 mL), 5% Na2CO3 solution (3 × 15 mL), brine, and dried over anhyd Na2SO4. The solution was concentrated and purified by column chromatography using EtOAc-hexane (2:8).
Selected Spectral Data
Compound Fmoc-Asn(2,3,4,6-tetra-O-acetyl-β-d-gluco-pyranosyl)oxazolidinone (3a: n = 1): white solid. IR (KBr): νmax = 1700, 1735, 1801 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.03-2.13 (4 s, 12 H), 2.81 (m, 2 H), 3.80 (m, 1 H), 4.03 (t, 1 H), 4.24 (m, 2 H), 4.42-4.52 (m, 2 H), 4.98 (t, 1 H), 5.05 (t, 1 H), 5.11 (s, 2 H), 5.21-5.35 (m, 2 H), 5.92 (br d, 1 H), 7. 33 (t, 2 H), 7.41 (t, 2 H), 7.52 (d, 2 H), 7.77 (d, 2 H). HRMS (ES): m/z calcd for C34H36N2NaO14 [M + Na]+: 719.2064; found: 719.2081.
Compound Fmoc-Gln(2,3,4,6-tetra-O-acetyl-β-d-gluco-pyranosyl)oxazolidinone (3b: n = 2): white solid. IR (KBr): νmax = 1698, 1730, 1800 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.86 (m, 2 H), 2.03-2.13 (4 s, 12 H), 2.22 (m, 2 H), 3.80 (m, 1 H), 4.03 (d, 1 H), 4.21-4.32 (m, 3 H), 4.48 (m, 2 H), 4.88 (t, 1 H), 5.06 (t, 1 H), 5.12 (s, 2 H), 5.27 (m, 2 H), 5.50 (br d, 1 H), 7. 33 (t, 2 H), 7.41 (t, 2 H), 7.52 (d, 2 H), 7.77 (d, 2 H). HRMS (ES): m/z calcd for C35H38N2NaO14 [M + Na]+: 733.2221; found: 733.2254.
Typical Procedure for the Preparation of Glycosylated
N
α
-Fmoc-Asn/Gln-OH
To the glycosylated N
α-Fmoc-Asn/Gln-5-oxazolidinone (10 mmol) dissolved in THF was added 1 N LiOH solution (1 equiv) and stirred at r.t. for 30 min. The reaction was monitored by TLC. After the completion of reaction, the reaction mixture was acidified with 10% citric acid solution and extracted with EtOAc. The organic layer was washed with brine and dried over anhyd Na2SO4. The solvent was removed in vacuo, and the resulted residue was purified by column chromatography using CHCl3, MeOH and AcOH (40:2:1).
Compound 4a: white solid. IR (KBr): νmax = 1705, 1733 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.03-2.13 (4 s, 12 H), 2.81 (m, 2 H), 3.80 (m, 1 H), 4.03 (t, 1 H), 4.24 (m, 2 H), 4.42-4.52 (m, 2 H), 4.98 (t, 1 H), 5.05 (t, 1 H), 5.21-5.35 (m, 2 H), 5.92 (br d, 1 H), 7. 33 (t, 2 H), 7.41 (t, 2 H), 7.52 (d, 2 H), 7.77 (d, 2 H). HRMS (ES): m/z calcd for C33H36N2NaO14 [M + Na]+: 707.2064; found: 707.2080.
Compound 4e: white solid. IR (KBr): νmax = 1698, 1732 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.86 (m, 2 H), 2.03-2.13 (4 s, 12 H), 2.22 (m, 2 H), 3.80 (m, 1 H), 4.03 (d, 1 H), 4.21-4.32 (m, 3 H), 4.48 (m, 2 H), 4.88 (t, 1 H), 5.06 (t, 1 H), 5.27 (2 H, m), 5.50 (br d, 1 H), 7. 33 (t, 2 H), 7.41 (t, 2 H), 7.52 (d, 2 H), 7.77 (d, 2 H). HRMS (ES): m/z calcd for C34H38N2NaO14 [M + Na]+: 721.2221; found: 721.2413.