References and Notes
1
Hojo H.
Nakahara Y.
Curr. Protein Pept. Sci.
2000,
1:
23
2a
Polt R.
Palian MM.
Drugs Future
2001,
26:
561
2b
Polt R.
Porreca F.
Szabo LZ.
Bilsky EJ.
Davis P.
Abbruscato TJ.
Davis TP.
Horvath R.
Yamamura HI.
Hruby VJ.
Proc. Natl. Acad. Sci. U.S.A.
1994,
91:
7114
3
Middagh CR.
Litman GW.
J. Biol. Chem.
1987,
262:
3671
4
Nomoto M.
Yamaoa K.
Haga M.
Hayashi M.
J. Pharm. Sci.
1998,
87:
326
5a
Andreotti AH.
Kahne D.
J. Am. Chem. Soc.
1993,
115:
3352
5b
Laczko I.
Hollosi M.
Urge L.
Urgen KE.
Weiner DB.
Mantzsch HH.
Thurin J.
Otvos L.
Biochemistry
1992,
31:
4282
6a
Hojo H.
Nakahara Y.
Pept. Sci.
2007,
88:
308
6b
Haase C.
Seitz O.
Top. Curr. Chem.
2007,
267:
1
6c
Liu L.
Bennett CS.
Wong C.-H.
Chem. Commun.
2006,
21
7
Cohen-Anisfield ST.
Lansbury PT.
J. Am. Chem. Soc.
1993,
115:
10531
8
Wong SY.
Guile GR.
Rademacher TW.
Dwek RA.
Glycoconjugate J.
1993,
10:
227
9a
Meldal M.
Curr. Opin. Struct. Biol.
1994,
4:
710
9b
Meldal M.
Bock K.
Glycoconjugate J.
1994,
11:
59
10
Anisfeld ST.
Lansbury PT.
J. Org. Chem.
1990,
55:
5560
11a
Likhosherstov L.
Novikova O.
Derveitskaja VA.
Kochetkov NK.
Carbohydr. Res.
1986,
146:
C1
11b
Corey EJ.
Suggs JW.
J. Org. Chem.
1973,
38:
3234
For similar applications of oxazolidinones in the synthesis of 2,3-diaminopropionic acid (2,3-Dap) and 2,4-diamino-butanoic acid (2,4-Dab). See:
12a
Teng H.
He Y.
Wu L.
Su J.
Feng X.
Qui G.
Liang S.
Hu X.
Synlett
2006,
877
12b
Ramanarao RV.
Tantry SJ.
Sureshbabu VV.
Synth. Commun.
2006,
36:
2912
12c
Teng H.
Jiang Z.
Wu L.
Su J.
Feng X.
Qiu G.
Liang S.
Hu X.
Synth. Commun.
2006,
36:
3803
For an efficient synthesis of Fmoc-amino acid-5-oxa-zolidinones employing a rapid protocol under microwave irradiation, see:
13a
Tantry SJ.
.
Sureshbabu VV.
Tetrahedron Lett.
2002,
43:
9461
13b For further optimized reaction conditions using MeCN as a solvent, see: Govender T.
Arvidsson PI.
Tetrahedron Lett.
2006,
47:
1691
14
Scholtz JM.
Bartlett PA.
Synthesis
1989,
131
15
Deng S.
Gangadharmath U.
Chang CWT.
J. Org. Chem.
2006,
71:
5179
16a
Thiem J.
Wiemann T.
Angew. Chem., Int. Ed. Engl.
1990,
29:
80
16b
Ameijde J.
Albada HB.
Liskamp RMJ.
J. Chem. Soc., Perkin Trans. 1
2002,
1042
17
Typical Procedure for the Synthesis of Glycosylated
N
α
-Fmoc-Asp/Glu-5-oxazolidinones
To a solution of Fmoc-Asp/Glu-5-oxazolidinone (10 mmol) in 10 mL of THF was added 1-amino β-glucose (10 mmol) in THF (40 mL), HBTU (10 mmol), and DIPEA (11 mmol), and stirred at r.t. for about 30 min. The solvent was evaporated under reduced pressure and the residue was diluted with H2O (15 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layer was washed with 10% citric acid (3 × 10 mL), 5% Na2CO3 solution (3 × 15 mL), brine, and dried over anhyd Na2SO4. The solution was concentrated and purified by column chromatography using EtOAc-hexane (2:8).
Selected Spectral Data
Compound Fmoc-Asn(2,3,4,6-tetra-O-acetyl-β-d-gluco-pyranosyl)oxazolidinone (3a: n = 1): white solid. IR (KBr): νmax = 1700, 1735, 1801 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.03-2.13 (4 s, 12 H), 2.81 (m, 2 H), 3.80 (m, 1 H), 4.03 (t, 1 H), 4.24 (m, 2 H), 4.42-4.52 (m, 2 H), 4.98 (t, 1 H), 5.05 (t, 1 H), 5.11 (s, 2 H), 5.21-5.35 (m, 2 H), 5.92 (br d, 1 H), 7. 33 (t, 2 H), 7.41 (t, 2 H), 7.52 (d, 2 H), 7.77 (d, 2 H). HRMS (ES): m/z calcd for C34H36N2NaO14 [M + Na]+: 719.2064; found: 719.2081.
Compound Fmoc-Gln(2,3,4,6-tetra-O-acetyl-β-d-gluco-pyranosyl)oxazolidinone (3b: n = 2): white solid. IR (KBr): νmax = 1698, 1730, 1800 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.86 (m, 2 H), 2.03-2.13 (4 s, 12 H), 2.22 (m, 2 H), 3.80 (m, 1 H), 4.03 (d, 1 H), 4.21-4.32 (m, 3 H), 4.48 (m, 2 H), 4.88 (t, 1 H), 5.06 (t, 1 H), 5.12 (s, 2 H), 5.27 (m, 2 H), 5.50 (br d, 1 H), 7. 33 (t, 2 H), 7.41 (t, 2 H), 7.52 (d, 2 H), 7.77 (d, 2 H). HRMS (ES): m/z calcd for C35H38N2NaO14 [M + Na]+: 733.2221; found: 733.2254.
18
Typical Procedure for the Preparation of Glycosylated
N
α
-Fmoc-Asn/Gln-OH
To the glycosylated N
α-Fmoc-Asn/Gln-5-oxazolidinone (10 mmol) dissolved in THF was added 1 N LiOH solution (1 equiv) and stirred at r.t. for 30 min. The reaction was monitored by TLC. After the completion of reaction, the reaction mixture was acidified with 10% citric acid solution and extracted with EtOAc. The organic layer was washed with brine and dried over anhyd Na2SO4. The solvent was removed in vacuo, and the resulted residue was purified by column chromatography using CHCl3, MeOH and AcOH (40:2:1).
Compound 4a: white solid. IR (KBr): νmax = 1705, 1733 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.03-2.13 (4 s, 12 H), 2.81 (m, 2 H), 3.80 (m, 1 H), 4.03 (t, 1 H), 4.24 (m, 2 H), 4.42-4.52 (m, 2 H), 4.98 (t, 1 H), 5.05 (t, 1 H), 5.21-5.35 (m, 2 H), 5.92 (br d, 1 H), 7. 33 (t, 2 H), 7.41 (t, 2 H), 7.52 (d, 2 H), 7.77 (d, 2 H). HRMS (ES): m/z calcd for C33H36N2NaO14 [M + Na]+: 707.2064; found: 707.2080.
Compound 4e: white solid. IR (KBr): νmax = 1698, 1732 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.86 (m, 2 H), 2.03-2.13 (4 s, 12 H), 2.22 (m, 2 H), 3.80 (m, 1 H), 4.03 (d, 1 H), 4.21-4.32 (m, 3 H), 4.48 (m, 2 H), 4.88 (t, 1 H), 5.06 (t, 1 H), 5.27 (2 H, m), 5.50 (br d, 1 H), 7. 33 (t, 2 H), 7.41 (t, 2 H), 7.52 (d, 2 H), 7.77 (d, 2 H). HRMS (ES): m/z calcd for C34H38N2NaO14 [M + Na]+: 721.2221; found: 721.2413.