RSS-Feed abonnieren
DOI: 10.1055/s-2007-990919
Mild and Efficient Allylation of Aldehydes with Allyltributylstannane Promoted by MgI2·(OEt)n Etherate
Publikationsverlauf
Publikationsdatum:
03. Dezember 2007 (online)
Abstract
Allylation of aldehydes with allyltributylstannane was promoted in the presence of MgI2·(OEt)n to give homoallylic alcohols. The iodide anion and a noncoordinating reaction medium (CH2Cl2) are the key features of this catalytic system.
Key words
magnesium iodide - allylation - aldehyde - allyltributylstannane
- 1
Corma A.Garcia H. Chem. Rev. 2003, 103: 4307 - 2
Yamamoto H. Lewis Acids in Organic Synthesis Wiley-VCH; Weinheim: 2000. - 3
Kobayashi S.Sugiura M.Kitagawa H.Lam WWL. Chem. Rev. 2002, 102: 2227 - 4
Nishigaichi Y.Takuwa A.Naruta Y.Maruyama K. Tetrahedron 1993, 49: 7395 - 5
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 - 6
Marshall JA. Chem. Rev. 1996, 96: 31 -
7a
Nicolaou KC.Kim DW.Baati R. Angew. Chem. Int. Ed. 2002, 41: 3701 -
7b
Hornberger KRC.Hamblet L.Leighton JL. J. Am. Chem. Soc. 2000, 122: 12894 -
7c
Felpin FX.Lebreton J. J. Org. Chem. 2002, 67: 9192 -
7d
Jaber JJ.Mitsui K.Rychnovsky SD. J. Org. Chem. 2001, 66: 4679 -
7e
Balskus EP.Mendez-Andino J.Arbit RM.Paquette LA. J. Org. Chem. 2001, 66: 6695 -
7f
Chen GM.Brown HC.Ramachandran PV. J. Org. Chem. 1999, 64: 721 -
7g
Lee KY.Oh C.-Y.Ham W.-H. Org. Lett. 2002, 4: 4403 -
8a
Nishiyama Y.Kakushou F.Sonoda N. Tetrahedron Lett. 2005, 46: 787 -
8b
Yanagisawa A.Morodome M.Nakashima H.Yamamoto H. Synlett 1997, 1309 -
8c
Yadav JS.Reddy BVS.Krishna AD.Sadasiv K.Chary CJ. Chem. Lett. 2003, 32: 248 -
8d
Teo YC.Tan KT.Loh TP. Chem. Commun. 2005, 1318 -
8e
Aspinall HC.Bissett JS.Greeves N.Levin D. Tetrahedron Lett. 2002, 43: 319 -
8f
Andrade CKZ.Azevedo NR.Oliveira GR. Synthesis 2002, 928 -
8g
Choudary BM.Sridhar C.Sekhar CVR. Synlett 2002, 1694 -
8h
Hamasaki S.Chounan Y.Horino H.Yamamoto Y. Tetrahedron Lett. 2000, 41: 9883 -
8i
Kobayashi S.Iwamoto S.Nagayama S. Synlett 1997, 1099 -
8j
Kobayashi S.Aoyama N.Manabe K. Synlett 2002, 483 - 9
Yadav JS.Reddy BVS.Kondaji G.Reddy JSS. Tetrahedron 2005, 61: 879 - 10
Bartoli G.Bosco M.Guiliani A.Marcantoni E.Palmieri A.Petrini M.Sambri L. J. Org. Chem. 2004, 69: 1290 -
11a
Li WD.Zhang XX. Org. Lett. 2002, 4: 3485 -
11b
Zhang XX.Li WD. Chin. Chem. Lett. 2003, 14: 800 - 12
Arkley V.Attenburrow J.Gregory GI.Walker T. J. Chem. Soc. 1962, 1260 - For examples of allylation reactions of ketones, see:
-
13a
Kobayashi S.Aoyama N.Manabe K. Synlett 2002, 483 -
13b
Hanawa H.Kii S.Maruoka K. Adv. Synth. Catal. 2001, 343: 57 -
13c
Hamasaki R.Chounan Y.Horino H.Yamamoto Y. Tetrahedron Lett. 2000, 41: 9883 -
14a
Tobe ML.Burgess J. Inorganic Reaction Mechanisms Addison Wesley Longman; New York: 1999. Chap. 7. -
14b
Wehmschulte RJ.Twamley B.Khan MA. Inorg. Chem. 2001, 40: 6004 -
15a
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 -
15b
Nishigaichi Y.Takuwa A.Naruta Y.Maruyama K. Tetrahedron 1993, 49: 7395 -
15c
Marshall JA. Chem. Rev. 1996, 96: 31 -
15d
Inoue K.Yasuda M.Baba A. Synlett 1997, 699 -
15e
Andrade CKZ.Azevedo NR.Oliveira GR. Synthesis 2002, 928 -
15f
Choudary BM.Sridhar C.Sekhar CVR. Synlett 2002, 1694 -
16a
Corey EJ.Li WD.Reichard GA. J. Am. Chem. Soc. 1998, 120: 2330 -
16b
Denmark SE.Stavenger RA. Acc. Chem. Res. 2000, 33: 432 -
16c
Denmark SE.Wynn T. J. Am. Chem. Soc. 2001, 123: 6199 -
17a
Corey EJ.Ishihara K. Tetrahedron Lett. 1992, 33: 6807 -
17b
Corey EJ.Imai N.Zhang HY. J. Am. Chem. Soc. 1991, 113: 728 - 20
Keck GE.Tarbet KH.Geraci LS. J. Am. Chem. Soc. 1993, 115: 8467 - 21
Watahiki T.Oriyama T. Tetrahedron Lett. 2002, 43: 8959 - 22
Shen KH.Yao CF. J. Org. Chem. 2006, 71: 3980 - 23
Miyamoto H.Daikawa N.Tanaka K. Tetrahedron Lett. 2003, 44: 6963 - 24
Li GL.Zhao G. Org. Lett. 2006, 8: 633 - 25
Bonini BF.Comes-Franchini M.Fochi M.Laboroi F.Mazzanti G.Ricci A.Varchi G. J. Org. Chem. 1999, 64: 8008 -
26a
Roush WS.Walts AE.Hoong LK. J. Am. Chem. Soc. 1985, 107: 8186 -
26b
Yadav JS.Reddy BVS.Kondaji G.Reddy JSS. Tetrahedron 2005, 61: 879
References and Notes
Typical Procedure for the Synthesis of Homoallylic Alcohols: To a stirred solution of benzaldehyde (0.5 mmol) in CH2Cl2 (3 mL) was added a freshly prepared solution of MgI2·(OEt)n in Et2O-benzene (1:2, 1.0 M, 0.5 mL) at r.t. After stirring for 10 min, a solution of allyltributylstannane (0.6 mmol) in CH2Cl2 (2 mL) was added dropwise via a syringe. The resulting homogeneous reaction mixture was stirred at r.t. for 3 h and quenched with distillated H2O. Extractive workup with Et2O and chromatographic purification of the crude product on silica gel gave the homoallylic alcohol 1a in 92% yield.
19
Selected spectroscopic data:
Compound 1a:20 1H NMR (400 MHz, CDCl3): δ = 2.13 (br s, 1 H), 2.47-2.52 (m, 2 H), 4.72 (t, J = 6.5 Hz, 1 H), 5.11-5.19 (m, 2 H), 5.76-5.85 (m, 1 H), 7.25-7.29 (m, 1 H), 7.32-7.35 (m, 4 H). Compound 1b:10 1H NMR (400 MHz, CDCl3): δ = 2.15 (br s, 1 H), 2.43-2.52 (m, 1 H), 2.54-2.62 (m, 1 H), 4.85-4.89 (m, 1 H), 5.18-5.22 (m, 2 H), 5.75-5.84 (m, 1 H), 7.53 (t, J = 8.0 Hz, 1 H), 7.70 (d, J = 7.6 Hz, 1 H), 8.14 (d, J = 8.1 Hz, 1 H), 8.25 (s, 1 H). Compound 1c:10 1H NMR (400 MHz, CDCl3): δ = 2.48-2.63 (m, 2 H), 2.82 (br s, 1 H), 4.90 (t, J = 6.2 Hz, 1 H), 5.17-5.22 (m, 2 H), 5.77-5.87 (m, 1 H), 7.56 (d, J = 8.0 Hz, 2 H), 8.21 (d, J = 8.0 Hz, 2 H). Compound 1d:21 1H NMR (400 MHz, CDCl3): δ = 2.45-2.49 (m, 2 H), 3.77 (s, 3 H), 4.65 (t, J = 6.5 Hz, 1 H), 5.08-5.16 (m, 2 H), 5.72-5.82 (m, 1 H), 6.78 (d, J = 8.2 Hz, 1 H), 6.88-6.91 (m, 2 H), 7.23 (t, J = 8.0 Hz, 1 H). Compound 1e:22 1H NMR (400 MHz, CDCl3): δ = 2.32-2.41 (m, 2 H), 2.58-2.63 (m, 1 H), 5.12-5.20 (m, 3 H), 5.79-5.90 (m, 1 H), 7.16-7.33 (m, 3 H), 7.54 (d, J = 7.6 Hz, 1 H). Compound 1f:9 1H NMR (400 MHz, CDCl3): δ = 2.31 (d, J = 2.9 Hz, 1 H), 2.41-2.49 (m, 2 H), 4.67-4.69 (m, 1 H), 5.12-5.16 (m, 2 H), 5.72-5.79 (m, 1 H), 7.25-7.31 (m, 4 H). Compound 1g:10 1H NMR (400 MHz, CDCl3): δ = 2.21 (br s, 1 H), 2.33 (s, 3 H), 2.45-2.50 (m, 2 H), 4.66 (t, J = 6.5 Hz, 1 H), 5.08-5.16 (m, 2 H), 5.74-5.82 (m, 1 H), 7.14 (d, J = 7.7 Hz, 2 H), 7.22 (d, J = 7.5 Hz, 2 H). Compound 1h:20 1H NMR (400 MHz, CDCl3): δ = 2.09 (br s, 1 H), 2.35-2.44 (m, 2 H), 4.34 (br s, 1 H), 5.14-5.19 (m, 2 H), 5.79-5.90 (m, 1 H), 6.23 (dd, J = 7.9, 15.9 Hz, 1 H), 6.59 (d, J = 15.9 Hz, 1 H), 7.21-7.37 (m, 5 H). Compound 1i:23 1H NMR (400 MHz, CDCl3): δ = 1.66 (br s, 1 H), 1.70 (d, J = 6.5 Hz, 3 H), 2.24-2.35 (m, 2 H), 4.08-4.15 (m, 1 H), 5.11-5.17 (m, 2 H), 5.51 (dd, J = 6.8, 15.2 Hz, 1 H), 5.65-5.73 (m, 1 H), 5.75-5.85 (m, 1 H). Compound 1j:10 1H NMR (400 MHz, CDCl3): δ = 1.73-1.81 (m, 2 H), 1.89 (br s, 1 H), 2.14-2.21 (m, 1 H), 2.26-2.32 (m, 1 H), 2.64-2.71 (m, 1 H), 2.75-2.83 (m, 1 H), 3.64-3.70 (m, 1 H), 5.10-5.15 (m, 2 H), 5.74-5.85 (m, 1 H), 7.15-7.30 (m, 5 H). Compound 1k:24 1H NMR (400 MHz, CDCl3): δ = 0.86 (t, J = 7.0 Hz, 3 H), 1.21-1.50 (m, 12 H), 1.65 (br s, 1 H), 2.05-2.21 (m, 1 H), 2.27-2.38 (m, 1 H), 3.58-3.72 (m, 1 H), 5.12-5.19 (m, 2 H), 5.77-5.95 (m, 1 H). Compound 1l:22 1H NMR (400 MHz, CDCl3): δ = 0.90 (t, J = 7.0 Hz, 3 H), 1.24-1.48 (m, 6 H), 1.72 (br s, 1 H), 2.12-2.16 (m, 1 H), 2.15-2.33 (m, 1 H), 3.60-3.65 (m, 1 H), 5.10-5.17 (m, 2 H), 5.77-5.90 (m, 1 H). Compound 1m:25 [α]24
D -21.2 (c = 1.02, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.35 (s, 9 H), 2.20-2.30 (m, 2 H), 2.83-2.94 (m, 2 H), 3.59 (td, J = 1.5, 7.0 Hz, 1 H), 3.73 (br q, J = 8.0 Hz, 1 H), 4.88 (d, J = 9.5 Hz, 1 H), 5.10-5.15 (m, 2 H), 5.70-5.80 (m, 1 H), 7.18-7.32 (m, 5 H). Compound 1n:26 [α]24
D +15.1 (c = 1.0, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.36 (s, 3 H), 1.43 (s, 3 H), 2.16-2.24 (m, 1 H), 2.25-2.37 (m, 1 H), 2.41 (br s, 1 H, OH), 3.62-3.78 (m, 1 H), 3.90-3.95 (m, 1 H), 3.98-4.06 (m, 2 H), 5.10-5.17 (m, 2 H), 5.80-5.91 (m, 1 H).