References and Notes
1
Corma A.
Garcia H.
Chem. Rev.
2003,
103:
4307
2
Yamamoto H.
Lewis Acids in Organic Synthesis
Wiley-VCH;
Weinheim:
2000.
3
Kobayashi S.
Sugiura M.
Kitagawa H.
Lam WWL.
Chem. Rev.
2002,
102:
2227
4
Nishigaichi Y.
Takuwa A.
Naruta Y.
Maruyama K.
Tetrahedron
1993,
49:
7395
5
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
6
Marshall JA.
Chem. Rev.
1996,
96:
31
7a
Nicolaou KC.
Kim DW.
Baati R.
Angew. Chem. Int. Ed.
2002,
41:
3701
7b
Hornberger KRC.
Hamblet L.
Leighton JL.
J. Am. Chem. Soc.
2000,
122:
12894
7c
Felpin FX.
Lebreton J.
J. Org. Chem.
2002,
67:
9192
7d
Jaber JJ.
Mitsui K.
Rychnovsky SD.
J. Org. Chem.
2001,
66:
4679
7e
Balskus EP.
Mendez-Andino J.
Arbit RM.
Paquette LA.
J. Org. Chem.
2001,
66:
6695
7f
Chen GM.
Brown HC.
Ramachandran PV.
J. Org. Chem.
1999,
64:
721
7g
Lee KY.
Oh C.-Y.
Ham W.-H.
Org. Lett.
2002,
4:
4403
8a
Nishiyama Y.
Kakushou F.
Sonoda N.
Tetrahedron Lett.
2005,
46:
787
8b
Yanagisawa A.
Morodome M.
Nakashima H.
Yamamoto H.
Synlett
1997,
1309
8c
Yadav JS.
Reddy BVS.
Krishna AD.
Sadasiv K.
Chary CJ.
Chem. Lett.
2003,
32:
248
8d
Teo YC.
Tan KT.
Loh TP.
Chem. Commun.
2005,
1318
8e
Aspinall HC.
Bissett JS.
Greeves N.
Levin D.
Tetrahedron Lett.
2002,
43:
319
8f
Andrade CKZ.
Azevedo NR.
Oliveira GR.
Synthesis
2002,
928
8g
Choudary BM.
Sridhar C.
Sekhar CVR.
Synlett
2002,
1694
8h
Hamasaki S.
Chounan Y.
Horino H.
Yamamoto Y.
Tetrahedron Lett.
2000,
41:
9883
8i
Kobayashi S.
Iwamoto S.
Nagayama S.
Synlett
1997,
1099
8j
Kobayashi S.
Aoyama N.
Manabe K.
Synlett
2002,
483
9
Yadav JS.
Reddy BVS.
Kondaji G.
Reddy JSS.
Tetrahedron
2005,
61:
879
10
Bartoli G.
Bosco M.
Guiliani A.
Marcantoni E.
Palmieri A.
Petrini M.
Sambri L.
J. Org. Chem.
2004,
69:
1290
11a
Li WD.
Zhang XX.
Org. Lett.
2002,
4:
3485
11b
Zhang XX.
Li WD.
Chin. Chem. Lett.
2003,
14:
800
12
Arkley V.
Attenburrow J.
Gregory GI.
Walker T.
J. Chem. Soc.
1962,
1260
For examples of allylation reactions of ketones, see:
13a
Kobayashi S.
Aoyama N.
Manabe K.
Synlett
2002,
483
13b
Hanawa H.
Kii S.
Maruoka K.
Adv. Synth. Catal.
2001,
343:
57
13c
Hamasaki R.
Chounan Y.
Horino H.
Yamamoto Y.
Tetrahedron Lett.
2000,
41:
9883
14a
Tobe ML.
Burgess J.
Inorganic Reaction Mechanisms
Addison Wesley Longman;
New York:
1999.
Chap. 7.
14b
Wehmschulte RJ.
Twamley B.
Khan MA.
Inorg. Chem.
2001,
40:
6004
15a
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
15b
Nishigaichi Y.
Takuwa A.
Naruta Y.
Maruyama K.
Tetrahedron
1993,
49:
7395
15c
Marshall JA.
Chem. Rev.
1996,
96:
31
15d
Inoue K.
Yasuda M.
Baba A.
Synlett
1997,
699
15e
Andrade CKZ.
Azevedo NR.
Oliveira GR.
Synthesis
2002,
928
15f
Choudary BM.
Sridhar C.
Sekhar CVR.
Synlett
2002,
1694
16a
Corey EJ.
Li WD.
Reichard GA.
J. Am. Chem. Soc.
1998,
120:
2330
16b
Denmark SE.
Stavenger RA.
Acc. Chem. Res.
2000,
33:
432
16c
Denmark SE.
Wynn T.
J. Am. Chem. Soc.
2001,
123:
6199
17a
Corey EJ.
Ishihara K.
Tetrahedron Lett.
1992,
33:
6807
17b
Corey EJ.
Imai N.
Zhang HY.
J. Am. Chem. Soc.
1991,
113:
728
18
Typical Procedure for the Synthesis of Homoallylic Alcohols: To a stirred solution of benzaldehyde (0.5 mmol) in CH2Cl2 (3 mL) was added a freshly prepared solution of MgI2·(OEt)n in Et2O-benzene (1:2, 1.0 M, 0.5 mL) at r.t. After stirring for 10 min, a solution of allyltributylstannane (0.6 mmol) in CH2Cl2 (2 mL) was added dropwise via a syringe. The resulting homogeneous reaction mixture was stirred at r.t. for 3 h and quenched with distillated H2O. Extractive workup with Et2O and chromatographic purification of the crude product on silica gel gave the homoallylic alcohol 1a in 92% yield.
19
Selected spectroscopic data:
Compound 1a:20 1H NMR (400 MHz, CDCl3): δ = 2.13 (br s, 1 H), 2.47-2.52 (m, 2 H), 4.72 (t, J = 6.5 Hz, 1 H), 5.11-5.19 (m, 2 H), 5.76-5.85 (m, 1 H), 7.25-7.29 (m, 1 H), 7.32-7.35 (m, 4 H). Compound 1b:10 1H NMR (400 MHz, CDCl3): δ = 2.15 (br s, 1 H), 2.43-2.52 (m, 1 H), 2.54-2.62 (m, 1 H), 4.85-4.89 (m, 1 H), 5.18-5.22 (m, 2 H), 5.75-5.84 (m, 1 H), 7.53 (t, J = 8.0 Hz, 1 H), 7.70 (d, J = 7.6 Hz, 1 H), 8.14 (d, J = 8.1 Hz, 1 H), 8.25 (s, 1 H). Compound 1c:10 1H NMR (400 MHz, CDCl3): δ = 2.48-2.63 (m, 2 H), 2.82 (br s, 1 H), 4.90 (t, J = 6.2 Hz, 1 H), 5.17-5.22 (m, 2 H), 5.77-5.87 (m, 1 H), 7.56 (d, J = 8.0 Hz, 2 H), 8.21 (d, J = 8.0 Hz, 2 H). Compound 1d:21 1H NMR (400 MHz, CDCl3): δ = 2.45-2.49 (m, 2 H), 3.77 (s, 3 H), 4.65 (t, J = 6.5 Hz, 1 H), 5.08-5.16 (m, 2 H), 5.72-5.82 (m, 1 H), 6.78 (d, J = 8.2 Hz, 1 H), 6.88-6.91 (m, 2 H), 7.23 (t, J = 8.0 Hz, 1 H). Compound 1e:22 1H NMR (400 MHz, CDCl3): δ = 2.32-2.41 (m, 2 H), 2.58-2.63 (m, 1 H), 5.12-5.20 (m, 3 H), 5.79-5.90 (m, 1 H), 7.16-7.33 (m, 3 H), 7.54 (d, J = 7.6 Hz, 1 H). Compound 1f:9 1H NMR (400 MHz, CDCl3): δ = 2.31 (d, J = 2.9 Hz, 1 H), 2.41-2.49 (m, 2 H), 4.67-4.69 (m, 1 H), 5.12-5.16 (m, 2 H), 5.72-5.79 (m, 1 H), 7.25-7.31 (m, 4 H). Compound 1g:10 1H NMR (400 MHz, CDCl3): δ = 2.21 (br s, 1 H), 2.33 (s, 3 H), 2.45-2.50 (m, 2 H), 4.66 (t, J = 6.5 Hz, 1 H), 5.08-5.16 (m, 2 H), 5.74-5.82 (m, 1 H), 7.14 (d, J = 7.7 Hz, 2 H), 7.22 (d, J = 7.5 Hz, 2 H). Compound 1h:20 1H NMR (400 MHz, CDCl3): δ = 2.09 (br s, 1 H), 2.35-2.44 (m, 2 H), 4.34 (br s, 1 H), 5.14-5.19 (m, 2 H), 5.79-5.90 (m, 1 H), 6.23 (dd, J = 7.9, 15.9 Hz, 1 H), 6.59 (d, J = 15.9 Hz, 1 H), 7.21-7.37 (m, 5 H). Compound 1i:23 1H NMR (400 MHz, CDCl3): δ = 1.66 (br s, 1 H), 1.70 (d, J = 6.5 Hz, 3 H), 2.24-2.35 (m, 2 H), 4.08-4.15 (m, 1 H), 5.11-5.17 (m, 2 H), 5.51 (dd, J = 6.8, 15.2 Hz, 1 H), 5.65-5.73 (m, 1 H), 5.75-5.85 (m, 1 H). Compound 1j:10 1H NMR (400 MHz, CDCl3): δ = 1.73-1.81 (m, 2 H), 1.89 (br s, 1 H), 2.14-2.21 (m, 1 H), 2.26-2.32 (m, 1 H), 2.64-2.71 (m, 1 H), 2.75-2.83 (m, 1 H), 3.64-3.70 (m, 1 H), 5.10-5.15 (m, 2 H), 5.74-5.85 (m, 1 H), 7.15-7.30 (m, 5 H). Compound 1k:24 1H NMR (400 MHz, CDCl3): δ = 0.86 (t, J = 7.0 Hz, 3 H), 1.21-1.50 (m, 12 H), 1.65 (br s, 1 H), 2.05-2.21 (m, 1 H), 2.27-2.38 (m, 1 H), 3.58-3.72 (m, 1 H), 5.12-5.19 (m, 2 H), 5.77-5.95 (m, 1 H). Compound 1l:22 1H NMR (400 MHz, CDCl3): δ = 0.90 (t, J = 7.0 Hz, 3 H), 1.24-1.48 (m, 6 H), 1.72 (br s, 1 H), 2.12-2.16 (m, 1 H), 2.15-2.33 (m, 1 H), 3.60-3.65 (m, 1 H), 5.10-5.17 (m, 2 H), 5.77-5.90 (m, 1 H). Compound 1m:25 [α]24
D -21.2 (c = 1.02, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.35 (s, 9 H), 2.20-2.30 (m, 2 H), 2.83-2.94 (m, 2 H), 3.59 (td, J = 1.5, 7.0 Hz, 1 H), 3.73 (br q, J = 8.0 Hz, 1 H), 4.88 (d, J = 9.5 Hz, 1 H), 5.10-5.15 (m, 2 H), 5.70-5.80 (m, 1 H), 7.18-7.32 (m, 5 H). Compound 1n:26 [α]24
D +15.1 (c = 1.0, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.36 (s, 3 H), 1.43 (s, 3 H), 2.16-2.24 (m, 1 H), 2.25-2.37 (m, 1 H), 2.41 (br s, 1 H, OH), 3.62-3.78 (m, 1 H), 3.90-3.95 (m, 1 H), 3.98-4.06 (m, 2 H), 5.10-5.17 (m, 2 H), 5.80-5.91 (m, 1 H).
20
Keck GE.
Tarbet KH.
Geraci LS.
J. Am. Chem. Soc.
1993,
115:
8467
21
Watahiki T.
Oriyama T.
Tetrahedron Lett.
2002,
43:
8959
22
Shen KH.
Yao CF.
J. Org. Chem.
2006,
71:
3980
23
Miyamoto H.
Daikawa N.
Tanaka K.
Tetrahedron Lett.
2003,
44:
6963
24
Li GL.
Zhao G.
Org. Lett.
2006,
8:
633
25
Bonini BF.
Comes-Franchini M.
Fochi M.
Laboroi F.
Mazzanti G.
Ricci A.
Varchi G.
J. Org. Chem.
1999,
64:
8008
26a
Roush WS.
Walts AE.
Hoong LK.
J. Am. Chem. Soc.
1985,
107:
8186
26b
Yadav JS.
Reddy BVS.
Kondaji G.
Reddy JSS.
Tetrahedron
2005,
61:
879