Aktuelle Neurologie 2008; 35(4): 169-176
DOI: 10.1055/s-2008-1067375
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Zukünftige Therapien der multiplen Sklerose

Future Therapeutic Options for Multiple SclerosisR.  Martin1 , S.  Schippling1 , C.  Heesen1
  • 1Institut für Neuroimmunologie und Klinische Multiple Sklerose Forschung (inims[1])
Further Information

Publication History

Publication Date:
05 May 2008 (online)

Zusammenfassung

Abgesehen von der Wiedereinführung eines monoklonalen Antikörpers gegen das Adhäsionsmolekül α4-Integrin, Natalizumab, hat sich an der Behandlung der multiplen Sklerose in der jüngeren Vergangenheit wenig geändert. Es befinden sich jedoch eine Reihe neuer Therapieansätze in vorklinischer und klinischer Entwicklung. Neben oral zu verabreichenden Substanzen in fortgeschrittenen Phase-III-Studien zählen hierzu monoklonale Antikörper gegen eine Vielzahl spezifischer Moleküle, Peptide, DNA-Vakzinierungen und zelltherapeutische Ansätze. Neuroprotektive oder gar neuroreparative Ansätze werden das Behandlungsrepertoire in Zukunft voraussichtlich ergänzen, und es gibt erste Ansätze in Richtung rationaler Kombinationsbehandlungen und auf den einzelnen Patienten ausgerichtete Therapieschemata.

Abstract

Apart from the reintroduction of a monoclonal antibody against the adhesion molecule α4 integrin, Natalizumab, little has changed in the treatment of multiple sclerosis in the recent past. However, a series of novel therapeutic approaches are in preclinical and advanced phase III clinical development. Besides orally administered compounds this includes monoclonal antibodies against a panel of specific molecules, peptides, DNA vaccinations and cell therapy approaches. Neuroprotective and even neuroreparative strategies may complement the therapeutic armamentarium in the future, and there are first attempts towards rational combination therapies and treatment schemes that are directed at the individual patient.

Literatur

  • 1 Noseworthy J H, Lucchinetti C, Rodriguez M, Weinshenker B G. Multiple sclerosis.  N Engl J Med. 2000;  343 938-952
  • 2 McFarland H F, Martin R. Multiple sclerosis: a complicated picture of autoimmunity.  Nat Immunol. 2007;  8 913-919
  • 3 Lucchinetti C, Brück W, Parisi J. et al . Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination.  Ann Neurol. 2000;  47 707-717
  • 4 Trapp B D, Peterson J, Ransohoff R M. et al . Axonal transection in the lesions of multiple sclerosis.  N Engl J Med. 1998;  338 278-285
  • 5 McElroy J P, Oksenberg J R. Multiple sclerosis genetics.  Curr Top Microbiol Immunol. 2008;  318 45-72
  • 6 Ascherio A, Munger K L. Environmental risk factors for multiple sclerosis. Part I: the role of infection.  Ann Neurol. 2007;  61 288-299
  • 7 Ascherio A, Munger K L. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors.  Ann Neurol. 2007;  61 504-513
  • 8 Lundmark F, Duvefelt K, Iacobaeus E. et al . Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis.  Nat Genet. 2007;  39 1108-1113
  • 9 Hafler D A, Compston A, Sawcer S. et al . Risk alleles for multiple sclerosis identified by a genomewide study.  N Engl J Med. 2007;  357 851-862
  • 10 Hemmer B, Hartung H P. Toward the development of rational therapies in multiple sclerosis: what is on the horizon?.  Ann Neurol. 2007;  62 314-326
  • 11 Brinkmann V, Davis M D, Heise C E. et al . The immune modulator FTY720 targets sphingosine 1-phosphate receptors.  J Biol Chem. 2002;  277 21453-21457
  • 12 Kappos L, Antel J, Comi G. et al . Oral fingolimod (FTY720) for relapsing multiple sclerosis.  N Engl J Med. 2006;  355 1124-1140
  • 13 Polman C, Barkhof F, Sandberg-Wollheim M. et al . Treatment with laquinimod reduces development of active MRI lesions in relapsing MS.  Neurology. 2005;  64 987-991
  • 14 Sipe J C, Romine J S, Koziol J A. et al . Cladribine in treatment of chronic progressive multiple sclerosis.  Lancet. 1994;  344 9-13
  • 15 Rice G P, Filippi M, Comi G. et al . Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group.  Neurology. 2000;  54 1145-1155
  • 16 Schimrigk S, Brune N, Hellwig K. et al . Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study.  Eur J Neurol. 2006;  13 604-610
  • 17 O'Connor P W, Li D, Freedman M S. et al . A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses.  Neurology. 2006;  66 894-900
  • 18 Wiendl H, Kieseier B C, Weissert R. et al . Treatment of active secondary progressive multiple sclerosis with treosulfan.  J Neurol. 2007;  254 884-889
  • 19 Frohman E M, Brannon K, Racke M K. et al . Mycophenolate mofetil in multiple sclerosis.  Clin Neuropharmacol. 2004;  27 80-83
  • 20 Kappos L, Barkoff F, Desmet A. The effect of oral temsirolimus on new magnetic resonance imaging scan lesions, brain atrophy and the number of relapses in multiple sclerosis. Reuslts from a randomised, controlled clinical trial.  J Neurol. 2007;  252 46
  • 21 Coles A, Deans J, Compston A. Campath-1H treatment of multiple sclerosis: lessons from the bedside for the bench.  Clin Neurol Neurosurg. 2004;  106 270-274
  • 22 Hauser S L, Waubant D, Arnold E L. et al . B-cell depletion with rituximab in relapsing-remitting multiple sclerosis.  N Engl J Med. 2008;  358 676-688
  • 23 Rose J W, Burns J B, Bjorklund J. Daclizumab phase II trial in relapsing and remitting multiple sclerosis: MRI and clinical results.  Neurology. 2007;  69 785-789
  • 24 Bielekova B, Richart N, Howard T. et al . Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta.  Proc Natl Acad Sci USA. 2004;  101 8705-8708
  • 25 Bielekova B, Catalfamo M, Reichert-Scrivner S. et al . Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis.  Proc Natl Acad Sci USA. 2006;  103 5941-5946
  • 26 Wittig B M. Drug evaluation: CNTO-1275, a mAb against IL-12/IL-23p40 for the potential treatment of inflammatory diseases.  Curr Opin Investig Drugs. 2007;  8 947-954
  • 27 Miller S D, Turley D M, Podojil J R. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease.  Nat Rev Immunol. 2007;  7 665-677
  • 28 Bielekova B, Goodwin B, Richert N. et al . Encephalitogenic potential of the myelin basic protein peptide (amino acids 83 - 99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand.  Nat Med. 2000;  6 1167-1175
  • 29 Vandenbark A A, Chou Y K, Whitham R. et al . Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial.  Nat Med. 1996;  2 1109-1115
  • 30 Zhang J, Medaer R, Stinissen P. et al . MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination.  Science. 1993;  261 1451-1454
  • 31 Pette M, Fuijita K, Wilkinson D. et al . Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and healthy donors.  Proc Natl Acad Sci U S A. 1990;  87 7968-7972
  • 32 Wucherpfennig K W, Catz I, Hausmann S. et al . Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes.  J Clin Invest. 1997;  100 1114-1122
  • 33 Warren K G, Catz I, Ferenczi L Z, Krantz M J. Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment.  Eur J Neurol. 2006;  13 887-895
  • 34 Bar-Or A, Vollmer T, Antal J. et al . Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial.  Arch Neurol. 2007;  64 1407-1415
  • 35 Saccardi R, Kozak T, Bocelli-Tyndall T. et al . Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database.  Mult Scler. 2006;  12 814-823
  • 36 Saccardi R, Mancardi G L, Solari A. et al . Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life.  Blood. 2005;  105 2601-2607
  • 37 Muraro P A, Cassiani-Ingoni R, Martin R. Using stem cells in multiple sclerosis therapies.  Cytotherapy. 2004;  6 615-620
  • 38 Muraro P A, Douek D C, Packer A. et al . Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients.  J Exp Med. 2005;  201 805-816
  • 39 Metz I, Lucchinetti C F, Openshaw H. et al . Autologous haematopoietic stem cell transplantation fails to stop demyelination and neurodegeneration in multiple sclerosis.  Brain. 2007;  130 1254-1262
  • 40 Youssef S, Stüve O, Pattarroyo J C. et al . The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease.  Nature. 2002;  420 78-84
  • 41 Vollmer T, Key L, Durkalski V. et al . Oral simvastatin treatment in relapsing-remitting multiple sclerosis.  Lancet. 2004;  363 1607-1608
  • 42 Sicotte N L, Liva S M, Klutch R. et al . Treatment of multiple sclerosis with the pregnancy hormone estriol.  Ann Neurol. 2002;  52 421-428
  • 43 Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells.  Eur J Immunol. 2006;  36 2566-2573
  • 44 Racke M K, Gocke A R, Muir M. et al . Nuclear receptors and autoimmune disease: the potential of PPAR agonists to treat multiple sclerosis.  J Nutr. 2006;  136 700-703
  • 45 Hauser S L, Oksenberg J R. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration.  Neuron. 2006;  52 61-76
  • 46 Waxman S G. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status.  Nat Clin Pract Neurol. 2008;  4 159-169
  • 47 Bechtold D A, Miller S J, Dawson A C. et al . Axonal protection achieved in a model of multiple sclerosis using lamotrigine.  J Neurol. 2006;  253 1542-1551
  • 48 Popovic N, Schubart A, Goetz B D. et al . Inhibition of autoimmune encephalomyelitis by a tetracycline.  Ann Neurol. 2002;  51 215-223
  • 49 Metz L M, Zhang Y, Yeung M. et al . Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis.  Ann Neurol. 2004;  55 756
  • 50 Ehrenreich H, Fischer B, Norra C. et al . Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis.  Brain. 2007;  130 2577-2588
  • 51 Karnezis T, Mandemakers W, McQualter J L. et al . The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination.  Nat Neurosci. 2004;  7 736-744
  • 52 Mi S, Hu B, Hahm K. et al . LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis.  Nat Med. 2007;  13 1228-1233
  • 53 Pluchino S, Zanotti L, Rossi B. et al . Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism.  Nature. 2005;  436 266-271
  • 54 Heesen C, Kasper J, Segal J. et al . Decisional role preferences, risk knowledge and information interests in patients with multiple sclerosis.  Mult Scler. 2004;  10 643-650
  • 55 Heesen C, Kasper J, Köpke S. et al . Informed shared decision making in multiple sclerosis - inevitable or impossible?.  J Neurol Sci. 2007;  259 109-117
  • 56 Gold S M, Mohr D C, Huitinga I. et al . The role of stress-response systems for the pathogenesis and progression of MS.  Trends Immunol. 2005;  26 644-652
  • 57 Heesen C, Romber A, Gold S. et al . Physical exercise in multiple sclerosis: supportive care or a putative disease-modifying treatment.  Expert Rev Neurother. 2006;  6 347-355

1 Gefördert durch die Gemeinnützige Hertie Stiftung.

Prof. Roland Martin

Zentrum für Molekulare Neurobiologie Hamburg (ZMNH), Universitätsklinikum Eppendorf

Falkenried 94

20251 Hamburg

Email: roland.martin@zmnh.uni-hamburg.de