Subscribe to RSS
DOI: 10.1055/s-2008-1072510
Novel Synthesis of Nine-Membered Oxa-Heterocycles by Pd(0)-Catalyzed Intramolecular Heck Reaction via Unusual 9-endo-trig-Mode Cyclization
Publication History
Publication Date:
17 March 2008 (online)
Abstract
Syntheses of nine-membered oxa-heterocyclic compounds by the application of the intramolecular Heck reaction have been difficult to develop. Herein, we describe the synthesis of this class of compounds through the 9-endo-trig cyclization and 8-endo-trig cyclization, respectively - a rare mode of cyclization in the literature.
Key words
Claisen rearrangement - intramolecular Heck reaction - 9-endo-trig - Pd(OAc)2 catalyst - oxa-heterocycles - medium-sized ring compounds
-
1a
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.Stang PJ. Wiley-VCH; New York: 1998. -
1b
Tsuji J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis Wiley; New York: 1995. - 2
Nicolaou KC.Sorensen EJ. Classics in Total Synthesis VCH; New York: 1996. Chap. 13. -
3a
Linde HHA. Helv. Chim. Acta 1965, 48: 1822 -
3b
Abraham DJ.Rosenstein RD.Lyon RL.Fong HHS. Tetrahedron Lett. 1972, 13: 909 - 4
Kam T.-S.Tee Y.-M.Subramaniam G. Nat. Prod. Lett. 1998, 12: 307 - 5
Baudoin O.Guenard D.Gueritte F. Mini-Rev. Org. Chem. 2004, 1: 333 - 6
Ma S.Negishi E.-i. J. Am. Chem. Soc. 1995, 117: 6345 -
7a
Majumdar KC.Rahaman H.Islam R.Roy B. Tetrahedron Lett. 2006, 47: 2111 -
7b
Majumdar KC.Islam R.Rahaman H.Roy B. Org. Biomol. Chem. 2006, 4: 2393 -
7c
Majumdar KC.Rahaman H.Muhuri S.Roy B. Synlett 2006, 466 -
7d
Majumdar KC.Rahaman H.Roy B. Lett. Org. Chem. 2006, 3: 526 - 8
Leggy AA.Wenchen L.Guy RK. Org. Lett. 2004, 6: 3005 -
9a
Rawal VH.Michovd C. J. Org. Chem. 1993, 58: 5583 -
9b
Owczarczyk Z.Lamaty F.Vawter EJ.Negishi E.-I. J. Am. Chem. Soc. 1992, 114: 10091 -
9c
Albeniz AC.Espinet P.Lin Y.-S. J. Am. Chem. Soc. 1996, 118: 7145 -
10a
Christoph G.Buchwald SL. Chem. Eur. J. 1999, 5: 3107 -
10b
Bumagin NA.Bykov VV.Sukhomlinova LI.Tolstaya TP.Beletskaya IP. Organomet. Chem. 1995, 486: 259 -
10c
Bumagin NA.More PG.Beletskaya IP. J. Organomet. Chem. 1989, 371: 397 -
10d
Reetz MT.Westermann E.Lohmer R.Lohmer G. Tetrahedron Lett. 1998, 39: 8449 -
10e
Moreno-Mañas M.Pleixats R.Roglans A. Synlett 1997, 1157 -
11a
Ashimori A.Bachand B.Calter MA.Govek SP.Overman LE.Poon D. J. Am. Chem. Soc. 1998, 120: 6488 -
11b
Shibasaki M.Boden CDJ.Kojima A. Tetrahedron Lett. 1997, 53: 7371 -
11c
Kundig EP.Ratni H.Crousse B.Bernardinelli G. J. Org. Chem. 2001, 66: 1852 -
11d
Yoshikawa E.Radhakrishna KV.Yamamoto Y. J. Am. Chem. Soc. 2000, 122: 7280 -
11e
Coperet C.Negishi E.-I. Org. Lett. 1999, 1: 165 -
11f
Ma S.Ni B. J. Org. Chem. 2002, 67: 8280 -
11g
Miyabe H.Torieda M.Inoue K.Tajiri K.Kiguchi T.Naito T. J. Org. Chem. 1998, 63: 4397 -
12a
Heidelberger C. Pyrimidine and Pyrimidine Antimetabolites in Cancer MedicineHolland JF.Frei E. Lea and Febiger; Philadelphia: 1984. p.801 -
12b
Heidelberger C.King DH. Antiviral Agents in Pharmacology and Therapeutics Vol. 6:Shugar D. Pergamon; Oxford: 1979. p.427 -
12c
Fischl MA.Richman DD.Grieco MH.Gottlieb MS.Volberding PA.Laskin OL.Leedon JM.Groopman JE.Mildvan D.Schooley RT.Jacson GG.Durack DT.King D. N. Engl. J. Med. 1987, 317: 185 -
12d
Griengl H.Bodenteich M.Hayden W.Wanek E.Streicher W.Stutz P.Bachmayer H.Ghazzouli I.Rosenwirth B. J. Med. Chem. 1985, 28: 1679 -
12e
Macilwain C. Nature (London) 1993, 365: 378 -
12f
Chu CK.Schimagi RF.Ahn MK.Ulas GV.Gu GP. J. Med. Chem. 1989, 32: 612 - 13
Otter BA.Taube A.Fox JJ. J. Org. Chem. 1971, 36: 1251 -
14a
Gazith M.Noys RM. J. Am. Chem. Soc. 1955, 77: 6091 -
14b
Gardner IJ.Noys RM. J. Am. Chem. Soc. 1961, 83: 2409 - 15
Majumdar KC.Khan AT. Synth. Commun. 1987, 1589 - 17
Jeffery T. Tetrahedron 1996, 52: 10113 -
18a
Geng X.Miller LM.Lin S.Ojima I. Org. Lett. 2003, 5: 3733 -
18b
De M A.Meyer FE. Angew. Chem. 1994, 106: 2473 -
18c
Shibasaki M.Boden CDJ.Kojima A. Tetrahedron 1997, 53: 7371 -
19a
Denieul M.-P.Skrydstrup T. Tetrahedron Lett. 1999, 40: 4901 -
19b
Dygos JH.Yonan EE.Scaros MG.Goodmonson OJ.Getman DP.Periana RA.Beck GR. Synthesis 1992, 741 -
19c
Finkelstein J.Holden KG.Perchonock CD. Tetrahedron Lett. 1978, 1629 -
19d
Alcaide B.Polanco C.Sierra MA. Eur. J. Org. Chem. 1998, 2913 - 20
Gibson SE.Guillo N.Middleton RJ.Thuilliez A.Tozer MJ. J Chem. Soc., Perkin Trans. 1 1997, 447
References and Notes
General Procedure for the Synthesis of Compounds 5a-f and 6a
A mixture of the compound 4a (100 mg, 0.265 mmol), TBAB (1.2 equiv), dry KOAc (2.75 equiv) was taken in dry DMF (10 mL) under nitrogen atmosphere. Then, the catalyst Pd(OAc)2 (10 mmol%, 5.92 mg) was added and the mixture was stirred in an oil bath at 100 °C for about 2-3.5 h. The reaction mixture was cooled, and H2O (3 mL) was added. It was extracted with EtOAc (3 × 10 mL) and washed with H2O (2 ×10 mL), followed by brine (15 mL). The organic layer was dried (Na2SO4) and evaporation of EtOAc furnished the crude mass, which was purified by column chromatography over silica gel. Elution of the column with 10% EtOAc-PE afforded the product 5a. Similarly, the other substrates 4b-f were subjected to the reaction under the same conditions to give products 5b-f and 6a.
Synthesis of the Precursors 4a-f; Typcial Procedure A mixture of compound 3 and different 2-bromobenzylbromides and dry K2CO3 (2.0 mg) in dry acetone (75 mL) in the presence of NaI was refluxed for a period of 2-3 h. After cooling the reaction mixture was filtered and the solvent was removed. The residual mass was extracted with CHCl3, washed with H2O, followed by brine-H2O, and dried (Na2SO4). Removal of CHCl3 gave a crude product, which was chromatographed over silica gel (60-120 mesh). Elution of the column with PE-EtOAc (2:1) gave compounds 4a-f. Compound 4a: yield 93%, white solid, mp 101-102 °C. IR (KBr): νmax = 1649, 1701 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.24 (d, 3 H, =CHCH 3, J = 7.2 Hz), 3.32 (s, 3 H, NCH3), 3.39 (s, 3 H, NCH3), 4.28-4.31 (m, 1 H, =CHCH3), 5.02 (dd, 1 H, =CHCH aHb, J = 2.1, 17.4 Hz), 5.11 (dd, 1 H, =CHCHa H b, J = 2.1, 12.2 Hz), 5.12 (s, 2 H, OCH2), 5.72-5.80 (m, 1 H, CH2=CH), 7.18 (dt, 1 H, ArH, J = 1.6, 7.7 Hz), 7.31 (dt, 1 H, ArH, J = 1.0, 7.4 Hz), 7.51-7.56 (m, 2 H, ArH). 13C NMR (125 MHz, CDCl3): δ = 16.1, 28.1, 33.2, 34.0, 73.0, 115.6, 123.5, 127.4, 129.6, 130.0, 130.8, 132.5, 135.9, 137.7, 147.7, 151.3, 157.6. MS: m/z = 378 [M+], 380 [M+ + 2]. Anal. Calcd (%) for C17H19BrN2O3: C, 53.84; H, 5.05; N, 7.39. Found: C, 53.88; H, 5.09; N, 7.23.
22
Synthesis of Compounds 5a-f and 6a; General Procedure
A mixture of the compound 4a (100 mg, 0.265 mmol), TBAB (1.2 equiv), dry KOAc (2.75 equiv) was taken in dry DMF (10 mL) under nitrogen atmosphere. Then, the catalyst Pd(OAc)2 (10 mmol%, 5.92 mg) was added and the mixture was stirred in an oil bath at 100 °C for about 2-3.5 h. The reaction mixture was cooled, and H2O (3 mL) was added. It was extracted with EtOAc (3 × 10 mL), washed with H2O (2 × 10 ml), and followed by brine (15 mL). The organic layer was dried (Na2SO4), evaporation of EtOAc furnished the crude mass, which was purified by column chromatography over silica gel. Elution of the column with 10% EtOAc-PE afforded the product 5a. Similarly, the other substrates 4b-f were subjected to the reaction under the same conditions to give products 5b-f and 6a.
Compound 5a: yield 90%, white solid, mp 193-194 °C. IR (KBr): νmax = 1648, 1700 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.84 (s, 3 H, =CCH3), 3.27 (d, 2 H, =CHCH
2, J = 8.6 Hz), 3.35 (s, 3 H, NCH3), 3.43 (s, 3 H, NCH3), 4.65 (d, 1 H, OCH
aHb, J = 12.6 Hz), 5.40 (d, 1 H, OCH
aHb, J = 12.6 Hz), 5.87 (t, 1 H, J = 8.6 Hz, CH2CH), 7.24-7.27 (m, 2 H, ArH), 7.32-7.36 (m, 2 H, ArH). 13C NMR (135 mode, CDCl3): δ = 21.9, 28.6, 34.4, 36.7, 77.2, 123.3, 127.3, 129.5, 130.3, 130.6, 132.0, 133.9, 137.1, 138.5, 143.5, 151.9, 161.1. DEPT (135 mode, CDCl3): δ = 21.9, 28.6, 34.4, 36.7 (CH2), 77.2 (OCH2), 127.3, 129.5, 130.3, 130.6, 133.9. HRMS: m/z calcd: 299.1406 [M + H], 321.1250 [Na + H]. Found: 299.1448 [M + H], 321.1224 [Na + H]. Anal. Calcd (%) for C17H18N2O3: C, 68.44; H, 6.08; N, 9.39. Found: C, 68.59; H, 6.07; N, 9.55.
The benzylic CH2 protons appear at δ = 4.65 and 5.40 ppm perhaps due to the slow exchange of the two nine-membered ring conformers in NMR time scale. However, DEPT (135 mode) experiment showed that the CH2 carbon is present in benzylic CH2O moiety. This was again confirmed by HMBC and COSY experiments.
Compound 6a: yield 12%, viscous liquid. IR (neat): νmax = 1648, 1701 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.34 (s, 3 H, =CHCH 3), 3.21 (s, 3 H, NCH3), 3.27 (s, 3 H, NCH3), 5.24 (s, 2 H, OCH2), 6.02 (s, 1 H, =CH), 7.19-7.25 (m, 2H, ArH), 7.26-7.33 (m, 2 H, ArH). MS: m/z = 284 [M+]. Anal. Calcd (%) for C16H16N2O3: C, 67.59; H, 5.67; N, 9.85. Found: C, 67.71; H, 5.66; N, 9.88.