References and Notes
1a
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
New York:
1998.
1b
Tsuji J.
Palladium Reagents and Catalysts: Innovations in Organic Synthesis
Wiley;
New York:
1995.
2
Nicolaou KC.
Sorensen EJ.
Classics in Total Synthesis
VCH;
New York:
1996.
Chap. 13.
3a
Linde HHA.
Helv. Chim. Acta
1965,
48:
1822
3b
Abraham DJ.
Rosenstein RD.
Lyon RL.
Fong HHS.
Tetrahedron Lett.
1972,
13:
909
4
Kam T.-S.
Tee Y.-M.
Subramaniam G.
Nat. Prod. Lett.
1998,
12:
307
5
Baudoin O.
Guenard D.
Gueritte F.
Mini-Rev. Org. Chem.
2004,
1:
333
6
Ma S.
Negishi E.-i.
J. Am. Chem. Soc.
1995,
117:
6345
7a
Majumdar KC.
Rahaman H.
Islam R.
Roy B.
Tetrahedron Lett.
2006,
47:
2111
7b
Majumdar KC.
Islam R.
Rahaman H.
Roy B.
Org. Biomol. Chem.
2006,
4:
2393
7c
Majumdar KC.
Rahaman H.
Muhuri S.
Roy B.
Synlett
2006,
466
7d
Majumdar KC.
Rahaman H.
Roy B.
Lett. Org. Chem.
2006,
3:
526
8
Leggy AA.
Wenchen L.
Guy RK.
Org. Lett.
2004,
6:
3005
9a
Rawal VH.
Michovd C.
J. Org. Chem.
1993,
58:
5583
9b
Owczarczyk Z.
Lamaty F.
Vawter EJ.
Negishi E.-I.
J. Am. Chem. Soc.
1992,
114:
10091
9c
Albeniz AC.
Espinet P.
Lin Y.-S.
J. Am. Chem. Soc.
1996,
118:
7145
10a
Christoph G.
Buchwald SL.
Chem. Eur. J.
1999,
5:
3107
10b
Bumagin NA.
Bykov VV.
Sukhomlinova LI.
Tolstaya TP.
Beletskaya IP.
Organomet. Chem.
1995,
486:
259
10c
Bumagin NA.
More PG.
Beletskaya IP.
J. Organomet. Chem.
1989,
371:
397
10d
Reetz MT.
Westermann E.
Lohmer R.
Lohmer G.
Tetrahedron Lett.
1998,
39:
8449
10e
Moreno-Mañas M.
Pleixats R.
Roglans A.
Synlett
1997,
1157
11a
Ashimori A.
Bachand B.
Calter MA.
Govek SP.
Overman LE.
Poon D.
J. Am. Chem. Soc.
1998,
120:
6488
11b
Shibasaki M.
Boden CDJ.
Kojima A.
Tetrahedron Lett.
1997,
53:
7371
11c
Kundig EP.
Ratni H.
Crousse B.
Bernardinelli G.
J. Org. Chem.
2001,
66:
1852
11d
Yoshikawa E.
Radhakrishna KV.
Yamamoto Y.
J. Am. Chem. Soc.
2000,
122:
7280
11e
Coperet C.
Negishi E.-I.
Org. Lett.
1999,
1:
165
11f
Ma S.
Ni B.
J. Org. Chem.
2002,
67:
8280
11g
Miyabe H.
Torieda M.
Inoue K.
Tajiri K.
Kiguchi T.
Naito T.
J. Org. Chem.
1998,
63:
4397
12a
Heidelberger C.
Pyrimidine and Pyrimidine Antimetabolites in Cancer Medicine
Holland JF.
Frei E.
Lea and Febiger;
Philadelphia:
1984.
p.801
12b
Heidelberger C.
King DH.
Antiviral Agents in Pharmacology and Therapeutics
Vol. 6:
Shugar D.
Pergamon;
Oxford:
1979.
p.427
12c
Fischl MA.
Richman DD.
Grieco MH.
Gottlieb MS.
Volberding PA.
Laskin OL.
Leedon JM.
Groopman JE.
Mildvan D.
Schooley RT.
Jacson GG.
Durack DT.
King D.
N. Engl. J. Med.
1987,
317:
185
12d
Griengl H.
Bodenteich M.
Hayden W.
Wanek E.
Streicher W.
Stutz P.
Bachmayer H.
Ghazzouli I.
Rosenwirth B.
J. Med. Chem.
1985,
28:
1679
12e
Macilwain C.
Nature (London)
1993,
365:
378
12f
Chu CK.
Schimagi RF.
Ahn MK.
Ulas GV.
Gu GP.
J. Med. Chem.
1989,
32:
612
13
Otter BA.
Taube A.
Fox JJ.
J. Org. Chem.
1971,
36:
1251
14a
Gazith M.
Noys RM.
J. Am. Chem. Soc.
1955,
77:
6091
14b
Gardner IJ.
Noys RM.
J. Am. Chem. Soc.
1961,
83:
2409
15
Majumdar KC.
Khan AT.
Synth. Commun.
1987,
1589
16
General Procedure for the Synthesis of Compounds 5a-f and 6a
A mixture of the compound 4a (100 mg, 0.265 mmol), TBAB (1.2 equiv), dry KOAc (2.75 equiv) was taken in dry DMF (10 mL) under nitrogen atmosphere. Then, the catalyst Pd(OAc)2 (10 mmol%, 5.92 mg) was added and the mixture was stirred in an oil bath at 100 °C for about 2-3.5 h. The reaction mixture was cooled, and H2O (3 mL) was added. It was extracted with EtOAc (3 × 10 mL) and washed with H2O (2 ×10 mL), followed by brine (15 mL). The organic layer was dried (Na2SO4) and evaporation of EtOAc furnished the crude mass, which was purified by column chromatography over silica gel. Elution of the column with 10% EtOAc-PE afforded the product 5a. Similarly, the other substrates 4b-f were subjected to the reaction under the same conditions to give products 5b-f and 6a.
17
Jeffery T.
Tetrahedron
1996,
52:
10113
18a
Geng X.
Miller LM.
Lin S.
Ojima I.
Org. Lett.
2003,
5:
3733
18b
De M A.
Meyer FE.
Angew. Chem.
1994,
106:
2473
18c
Shibasaki M.
Boden CDJ.
Kojima A.
Tetrahedron
1997,
53:
7371
19a
Denieul M.-P.
Skrydstrup T.
Tetrahedron Lett.
1999,
40:
4901
19b
Dygos JH.
Yonan EE.
Scaros MG.
Goodmonson OJ.
Getman DP.
Periana RA.
Beck GR.
Synthesis
1992,
741
19c
Finkelstein J.
Holden KG.
Perchonock CD.
Tetrahedron Lett.
1978,
1629
19d
Alcaide B.
Polanco C.
Sierra MA.
Eur. J. Org. Chem.
1998,
2913
20
Gibson SE.
Guillo N.
Middleton RJ.
Thuilliez A.
Tozer MJ.
J Chem. Soc., Perkin Trans. 1
1997,
447
21
Synthesis of the Precursors 4a-f; Typcial Procedure
A mixture of compound 3 and different 2-bromobenzylbromides and dry K2CO3 (2.0 mg) in dry acetone (75 mL) in the presence of NaI was refluxed for a period of 2-3 h. After cooling the reaction mixture was filtered and the solvent was removed. The residual mass was extracted with CHCl3, washed with H2O, followed by brine-H2O, and dried (Na2SO4). Removal of CHCl3 gave a crude product, which was chromatographed over silica gel (60-120 mesh). Elution of the column with PE-EtOAc (2:1) gave compounds 4a-f.
Compound 4a: yield 93%, white solid, mp 101-102 °C. IR (KBr): νmax = 1649, 1701 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.24 (d, 3 H, =CHCH
3, J = 7.2 Hz), 3.32 (s, 3 H, NCH3), 3.39 (s, 3 H, NCH3), 4.28-4.31 (m, 1 H, =CHCH3), 5.02 (dd, 1 H, =CHCH
aHb, J = 2.1, 17.4 Hz), 5.11 (dd, 1 H, =CHCHa
H
b, J = 2.1, 12.2 Hz), 5.12 (s, 2 H, OCH2), 5.72-5.80 (m, 1 H, CH2=CH), 7.18 (dt, 1 H, ArH, J = 1.6, 7.7 Hz), 7.31 (dt, 1 H, ArH, J = 1.0, 7.4 Hz), 7.51-7.56 (m, 2 H, ArH). 13C NMR (125 MHz, CDCl3): δ = 16.1, 28.1, 33.2, 34.0, 73.0, 115.6, 123.5, 127.4, 129.6, 130.0, 130.8, 132.5, 135.9, 137.7, 147.7, 151.3, 157.6. MS: m/z = 378 [M+], 380 [M+ + 2]. Anal. Calcd (%) for C17H19BrN2O3: C, 53.84; H, 5.05; N, 7.39. Found: C, 53.88; H, 5.09; N, 7.23.
22
Synthesis of Compounds 5a-f and 6a; General Procedure
A mixture of the compound 4a (100 mg, 0.265 mmol), TBAB (1.2 equiv), dry KOAc (2.75 equiv) was taken in dry DMF (10 mL) under nitrogen atmosphere. Then, the catalyst Pd(OAc)2 (10 mmol%, 5.92 mg) was added and the mixture was stirred in an oil bath at 100 °C for about 2-3.5 h. The reaction mixture was cooled, and H2O (3 mL) was added. It was extracted with EtOAc (3 × 10 mL), washed with H2O (2 × 10 ml), and followed by brine (15 mL). The organic layer was dried (Na2SO4), evaporation of EtOAc furnished the crude mass, which was purified by column chromatography over silica gel. Elution of the column with 10% EtOAc-PE afforded the product 5a. Similarly, the other substrates 4b-f were subjected to the reaction under the same conditions to give products 5b-f and 6a.
Compound 5a: yield 90%, white solid, mp 193-194 °C. IR (KBr): νmax = 1648, 1700 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.84 (s, 3 H, =CCH3), 3.27 (d, 2 H, =CHCH
2, J = 8.6 Hz), 3.35 (s, 3 H, NCH3), 3.43 (s, 3 H, NCH3), 4.65 (d, 1 H, OCH
aHb, J = 12.6 Hz), 5.40 (d, 1 H, OCH
aHb, J = 12.6 Hz), 5.87 (t, 1 H, J = 8.6 Hz, CH2CH), 7.24-7.27 (m, 2 H, ArH), 7.32-7.36 (m, 2 H, ArH). 13C NMR (135 mode, CDCl3): δ = 21.9, 28.6, 34.4, 36.7, 77.2, 123.3, 127.3, 129.5, 130.3, 130.6, 132.0, 133.9, 137.1, 138.5, 143.5, 151.9, 161.1. DEPT (135 mode, CDCl3): δ = 21.9, 28.6, 34.4, 36.7 (CH2), 77.2 (OCH2), 127.3, 129.5, 130.3, 130.6, 133.9. HRMS: m/z calcd: 299.1406 [M + H], 321.1250 [Na + H]. Found: 299.1448 [M + H], 321.1224 [Na + H]. Anal. Calcd (%) for C17H18N2O3: C, 68.44; H, 6.08; N, 9.39. Found: C, 68.59; H, 6.07; N, 9.55.
The benzylic CH2 protons appear at δ = 4.65 and 5.40 ppm perhaps due to the slow exchange of the two nine-membered ring conformers in NMR time scale. However, DEPT (135 mode) experiment showed that the CH2 carbon is present in benzylic CH2O moiety. This was again confirmed by HMBC and COSY experiments.
23 Compound 6a: yield 12%, viscous liquid. IR (neat): νmax = 1648, 1701 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.34 (s, 3 H, =CHCH
3), 3.21 (s, 3 H, NCH3), 3.27 (s, 3 H, NCH3), 5.24 (s, 2 H, OCH2), 6.02 (s, 1 H, =CH), 7.19-7.25 (m, 2H, ArH), 7.26-7.33 (m, 2 H, ArH). MS: m/z = 284 [M+]. Anal. Calcd (%) for C16H16N2O3: C, 67.59; H, 5.67; N, 9.85. Found: C, 67.71; H, 5.66; N, 9.88.