Subscribe to RSS
DOI: 10.1055/s-2008-1072787
Solvent- and Catalyst-Free Three-Component Reaction with β-Ketoamides for the Stereoselective One-Pot Access to 1,4-Diazepines
Publication History
Publication Date:
07 May 2008 (online)
Abstract
The stereoselective one-pot synthesis of polysubstituted 1,4-diazepine derivatives has been achieved via a new solvent- and catalyst-free multicomponent domino reaction from β-ketoamides. This green and experimentally simple sequence is conducted from easily accessible achiral starting materials, does not require any harmful reagents, and results in a high increase in molecular complexity and diversity. Moreover, water is the only byproduct liberated during the reaction.
Key words
multicomponent reaction - 1,4-diazepines - β-ketoamides - solvent-free reaction - green chemistry
-
1a
Multicomponent Reactions
Zhu J.Bienaymé H. Wiley-VCH; Weinheim: 2005. -
1b
Ramon DJ.Yus M. Angew. Chem. Int. Ed. 2005, 44: 1602 -
1c
Dömling A. Chem. Rev. 2006, 106: 17 -
2a
Domino Reactions in Organic Synthesis
Tietze LF.Brasche G.Gericke KM. Wiley-VCH; Weinheim: 2006. -
2b
Padwa A.Bur SK. Tetrahedron 2007, 63: 5341 -
3a
Schreiber SL. Science 2000, 287: 1964 -
3b
Vugts DJ.Koningstein MM.Schmitz RF.de Kanter FJJ.Groen MB.Orru RVA. Chem. Eur. J. 2006, 12: 7178 -
3c
Nielsen TE.Schreiber SL. Angew. Chem. Int. Ed. 2008, 47: 48 - Step economy:
-
4a
Wender PA.Baryza JL.Brenner SE.Clarke MO.Gamber GG.Horan JC.Jessop TC.Kan C.Pattabiraman K.Williams TJ. Pure Appl. Chem. 2003, 75: 143 -
4b
Wender PA.Baryza JL.Brenner SE.Clarke MO.Craske ML.Horan JC.Meyer T. Curr. Drug Discovery Technol. 2004, 1: 1 -
4c
Wender PA.Gamber GG.Hubbard RD.Pham SM.Zhang L. J. Am. Chem. Soc. 2005, 127: 2836 - Atom-economy:
-
5a
Trost BM. Science 1991, 254: 1471 -
5b
Trost BM. Angew. Chem., Int. Ed. Engl. 1995, 34: 258 -
5c
Trost BM. Acc. Chem. Res. 2002, 35: 695 - 6 For a special issue in environmental chemistry, see: Chem. Rev. 1995, 95: 3
- 7
Tanaka K. Solvent-Free Organic Synthesis Wiley-VCH; Weinheim: 2003. - 8a For a special issue in green chemistry, see: Chem. Rev. 2007, 107: 2167
-
8b
Tucker JL. Org. Process Res. Dev. 2006, 10: 315 - For recent reviews on the utilization of 1,3-dicarbonyl derivatives in MCR, see:
-
9a
Simon C.Constantieux T.Rodriguez J. Eur. J. Org. Chem. 2004, 4957 -
9b
Liéby-Muller F.Simon C.Constantieux T.Rodriguez J. QSAR Comb. Sci. 2006, 25: 432 -
10a
Simon C.Peyronel JF.Rodriguez J. Org. Lett. 2001, 3: 2145 -
10b
Simon C.Liéby-Muller F.Peyronel J.-F.Constantieux T.Rodriguez J. Synlett 2003, 2301 -
10c
Liéby-Muller F.Constantieux T.Rodriguez J. J. Am. Chem. Soc. 2005, 127: 17176 -
10d
Liéby-Muller F.Simon C.Imhof K.Constantieux T.Rodriguez J. Synlett 2006, 1671 -
10e
Liéby-Muller F.Constantieux T.Rodriguez J. Synlett 2007, 1323 -
11a
Habib-Zahmani H.Hacini S.Charonnet E.Rodriguez J. Synlett 2002, 1827 -
11b
Habib-Zahmani H.Viala J.Hacini S.Rodriguez J. Synlett 2007, 1037 -
12a
Filippini MH.Rodriguez J. J. Chem. Soc., Chem. Commun. 1995, 33 -
12b
Charonnet E.Filippini MH.Rodriguez J. Synthesis 2001, 788 - 13 While this work was in progress, a related acid-catalyzed transformation with β-ketoesters in 1,2-dichloroethane as solvent was reported:
Fujioka H.Murai K.Kubo O.Ohba Y.Kita Y. Org. Lett. 2007, 9: 1687 - 14 For recent biological activity investigations with respect to these heterocycles, see for example:
Tanaka T.Muto T.Maruoka H.Imajo S.Fukami H.Tomimori Y.Fukuda Y.Nakatsuka T. Bioorg. Med. Chem. Lett. 2007, 17: 3431 - 15
Wender PA.Verma VA.Paxton TJ.Pillow TH. Acc. Chem. Res. 2008, 41: 40 - For recent contributions in this field, see for example:
-
21a
Iden HS.Lubell WD. Org. Lett. 2006, 8: 3425 -
21b
Van Brabandt W.Vanwalleghem M.D’hooghe M.De Kimpe N. J. Org. Chem. 2006, 71: 7083 -
21c
Wlodarczyk N.Gilleron P.Millet R.Houssin R.Hénichart J.-P. Tetrahedron Lett. 2007, 48: 2583 -
21d
Maruoka H.Muto T.Tanaka T.Imajo S.Tomimori Y.Fukuda Y.Nakatsuka T. Bioorg. Med. Chem. Lett. 2007, 17: 3435
References and Notes
Chemical purities were in the range from 80-95% as estimated by NMR. However, flash chromatography purification resulted in a significant lost of pure product, probably due to unrationalized degradation.
17Stereochemistry of the products has been fully studied by 2D NMR analysis, including a detailed analysis of coupling patterns and constants.
18A complex mixture of unidentified products was obtained, probably due to degradation of starting materials.
19
Typical Procedure for the Synthesis of Compounds 4
To a 50 mL two-necked round-bottomed flask flushed with Ar, equipped with a magnetic stirring bar and a reflux condenser, were added β-ketoamide 2 (1.28 mmol), aldehyde 3 (1.5 mmol), and diamine 1 (1.28 mmol). The mixture was stirred at 110 °C under Ar for 4 h, diluted with EtOAc (20 mL) after cooling, and filtered through a short pad of Celite. After evaporation, the crude resulting slurry was purified by flash chromatography over SiO2.
Selected Physical Data for Compounds 4a
Amber oil; R
f
= 0.7 (EtOAc). 1H NMR (300.13 MHz, CDCl3): δ = 1.10-1.40 (m, 1 H), 1.40-1.60 (m, 1 H), 2.10 (br s, 1 H), 2.30-2.40 (m, 2 H), 2.87 (dd, J = 15.0, 6.0 Hz, 1 H), 3.10 (dd, J = 15.0, 6.0 Hz, 1 H), 3.20-3.30 (m, 2 H), 3.42 (d, J = 12.0 Hz, 1 H), 3.51 (d, J = 12.0 Hz, 1 H), 6.60 (br s, 1 H), 6.95 (t, J = 9.0 Hz, 1 H), 7.10-7.30 (m, 7 H), 7.42 (d, J = 9.0 Hz, 2 H), 8.71 (br s, 1 H). 13C NMR (75.47 MHz, CDCl3): δ = 26.9, 27.4, 47.4, 51.4, 54.1, 68.7, 94.4, 119.6 (2 C), 123.0, 127.6, 127.7 (2 C), 128.5 (2 C), 128.7 (2 C), 138.8, 143.3, 166.4, 167.0. MS (EI): m/z (%) = 225 (6), 241 (43)
[M - Ph+], 242 (9), 334 (100) [M + H+], 335 (19).
Although it is not clear at the moment why we observed this loss of stereoselectivity, the two diastereomers were easily separable by flash chromatography.