References and Notes
1 For an excellent recent review on
the palladium-chemistry of arenediazonium salts, see: Roglans A.
Pla-Quintana A.
Moreno-Mañas M.
Chem. Rev.
2006,
106:
4622
For some recent selected references,
see:
2a
Ma Y.
Song C.
Chai Q.
Ma C.
Andrus MB.
Synthesis
2003,
2886
2b
Wang C.
Tan L.-S.
He J.-P.
Hu H.-W.
Xu J.-H.
Synth.
Commun.
2003,
33:
773
2c
Masllorens J.
Moreno-Manãs M.
Pla-Quintana A.
Roglans A.
Org. Lett.
2003,
5:
1559
2d
Schmidt B.
Chem.
Commun.
2003,
1656
2e
Nelson ML.
Ismail MY.
McIntyre L.
Bhatia B.
Viski P.
Hawkins P.
Rennie G.
Andorsky D.
Messersmith D.
Stapleton K.
Dumornay J.
Sheahan P.
Verma AK.
Warchol T.
Levy SB.
J.
Org. Chem.
2003,
68:
5838
2f
Dai M.
Liang B.
Wang C.
Chen J.
Yang Z.
Org. Lett.
2004,
6:
221
2g
Kabalka GW.
Dong G.
Venkataiah B.
Tetrahedron Lett.
2004,
45:
2775
2h
Xu L.-H.
Zhang Y.-Y.
Wang X.-L.
Chou J.-Y.
Dyes Pigm.
2004,
62:
283
2i
Sabino AA.
Machado AHL.
Correia CRD.
Eberlin MN.
Angew. Chem. Int. Ed.
2004,
43:
2514
2j
Sabino AA.
Machado AHL.
Correia CRD.
Eberlin MN.
Angew. Chem. Int. Ed.
2004,
43:
2514 ; corrigendum: Angew.
Chem. Int. Ed. 2004 , 43 ,
4389
2k
Masllorens J.
Bouquillon S.
Roglans A.
Hénin F.
Muzart J.
J.
Organomet. Chem.
2005,
690:
3822
2l
Garcia ALL.
Carpes MJS.
Montes de Oca ACB.
dos Santos MAG.
Santana CC.
Correia CRD.
J.
Org. Chem.
2005,
70:
1050
2m
Artuso E.
Barbero M.
Degani I.
Dughera S.
Fochi R.
Tetrahedron
2006,
62:
3146
2n
Pastre JC.
Correia CRD.
Org.
Lett.
2006,
8:
1657
2o
Perez R.
Veronese D.
Coelho F.
Antunes
OAC.
Tetrahedron
Lett.
2006,
47:
1325
For some recent references, see:
3a
Peyroux E.
Berthiol F.
Doucet H.
Santelli M.
Eur. J. Org. Chem.
2004,
1075
3b
Jo J.
Chi C.
Höger S.
Wegner G.
Yoon DY.
Chem. Eur.
J.
2004,
10:
2681
3c See also: Gallo V.
Mastrorilli P.
Nobile CF.
Paolillo R.
Taccardi N.
Eur. J. Inorg. Chem.
2005,
582
3d
Darses S.
Genet JP.
Eur. J. Org. Chem.
2003,
4313
4a
Kikukawa K.
Kono K.
Wada F.
Matsuda T.
Chem. Lett.
1982,
35
4b
Kikukawa K.
Kono K.
Wada F.
Matsuda T.
J. Org. Chem.
1983,
48:
1333
4c
Kikukawa K.
Idemoto T.
Katayama A.
Kono K.
Wada F.
Matsuda T.
J. Chem. Soc., Perkin Trans. 1
1987,
1511
4d
Dughera S.
Synthesis
2006,
1117
5a
Kikukawa K.
Kono K.
Nagira K.
Wada F.
Matsuda T.
Tetrahedron Lett.
1980,
21:
2877
5b
Nagira K.
Kikukawa K.
Wada F.
Matsuda T.
J. Org. Chem.
1980,
45:
2365
5c
Kikukawa K.
Kono K.
Nagira K.
Wada F.
Matsuda T.
J. Org.
Chem.
1981,
46:
4413
5d
Sengupta S.
Sadhukhan SK.
Bhattacharyya S.
Guha J.
J. Chem. Soc.,
Perkin Trans. 1
1998,
407
5e
Kikukawa K.
Totoki T.
Wada F.
Matsuda T.
J. Organomet. Chem.
1984,
270:
283
5f
Siegrist U.
Rapold T.
Blaser H.-U.
Org.
Process Res. Dev.
2003,
7:
429
6
Pelzer G.
Keim W.
J. Mol. Catal. A: Chem.
1999,
139:
235
7a
Willis DM.
Strongin RM.
Tetrahedron Lett.
2000,
41:
8683
7b
Ma Y.
Song C.
Jiang W.
Xue G.
Cannon JF.
Wang X.
Andrus MB.
Org.
Lett.
2003,
5:
4635
8
Cacchi S.
Fabrizi G.
Goggiamani A.
Persiani D.
Org. Lett.
2008,
10:
1597
9a
Arcadi A.
Marinelli F.
Bernocchi E.
Cacchi S.
Ortar G.
J. Organomet. Chem.
1989,
368:
249
9b
Larock RC.
Johnson PL.
Chem.
Commun.
1989,
1368
10
Mayo P.
Tam W.
Tetrahedron
2002,
58:
9527
11
Wållberg A.
Magnusson G.
Tetrahedron
2000,
56:
8533
12a
Clayton SC.
Regan AC.
Tetrahedron Lett.
1993,
34:
7493
12b
Bai D.
Xu R.
Chu G.
Zhu X.
J. Org. Chem.
1996,
61:
4600
13a
Kasyan A.
Wagner C.
Maier ME.
Tetrahedron
1998,
54:
8047
13b
Carroll FI.
Brieaddy LE.
Navarro HA.
Damaj MI.
Martin BR.
J. Med. Chem.
2005,
48:
7491
14a
Brunner H.
Kramler K.
Synthesis
1991,
1121
14b
Sakuraba S.
Awano K.
Achiwa K.
Synlett
1994,
291
14c
Sakuraba S.
Okada T.
Morimoto T.
Achiwa K.
Chem. Pharm. Bull.
1995,
43:
927
14d
Wu X.-Y.
Xu
H.-D.
Zhoua Q.-L.
Chan ASC.
Tetrahedron: Asymmetry
2000,
11:
1255
14e
Wu X.-Y.
Xu H.-D.
Tang F.-Y.
Zhou Q.-L.
Tetrahedron: Asymmetry
2001,
12:
2565
15a
Kikukawa K.
Nagira K.
Wada F.
Matsuda T.
Tetrahedron
1981,
37:
31
15b
Sengupta S.
Bhattacharyya S.
J. Chem. Soc., Perkin
Trans. 1
1993,
1943
16 When 1a was
subjected to the reaction conditions reported in Table
[¹ ]
(entry 5) omitting Pd(OAc)2 no
reduction product 4 was formed suggesting
that the reduction of 1a to 4 proceeds through
a palladium-catalyzed process.
17
Typical Procedure
for the Palladium-Catalyzed Hydro-arylation of Norbornene Derivatives
with Arenediazo-nium Tetrafluoroborates - Hydroarylation
of 1a with 2a (Table 2, entry 1)
To a stirred solution
of 1a (105.1 mg, 0.50 mmol) and Pd(OAc)2 (5.6
mg, 0.025 mmol) in anhyd THF (4.0 mL), 2a (233.8
mg, 1.0 mmol) was added at r.t. under argon. The reaction mixture
was cooled in an ice bath. Then, i -Pr3 SiH (205 µL,
1.0 mmol) was added and the reaction mixture was stirred at 15 ˚C
for 40 min under argon (the reactor was protected from light with
aluminum film). After this time, the mixture was diluted with EtOAc,
washed with H2 O, dried over Na2 SO4 ,
and concentrated under reduced pressure. The residue was purified
by chromatography on silica gel [n -hexane-EtOAc,
90:10 (v/v)] to afford 120.8 mg (73% yield)
of 3a , mp 64-66 ˚C.
IR (KBr): 2968, 1735, 1198 cm-¹ . ¹ H
NMR (400 MHz, CDCl3 ): δ = 7.89 (d, J = 8.2 Hz, 2
H), 7.38 (d, J = 8.2
Hz, 2 H), 3.70 (s, 6 H), 3.64 (t, J = 7.4 Hz,
1 H), 3.19 (ddd, J
1 = 11.7
Hz, J
2 = 4.5
Hz, J
3 = 1.4
Hz, 1 H), 2.99 (dd, J
1 = 11.8
Hz, J
2 = 3.7
Hz, 1 H), 2.75-270 (m, 1 H), 2.73-2.58 (m, 1 H),
2.13 (ddd, J
1 = 11.1
Hz, J
2 = 8.8
Hz, J
3 = 3.7
Hz, 1 H), 1.74-1.65 (m, 2 H), 1.42-1.26 (m, 1
H). ¹³ C NMR (100.6 MHz, CDCl3 ): δ = 197.9,
172.9, 172.6, 151.9, 134.9, 128.5, 127.5, 51.7, 51.5, 47.7, 46.2,
45.9, 41.6, 40.2, 37.5, 33.2, 26.6. MS: m/z (relative
intensity) = 330 (12) [M+ ],
298 (10), 270 (57), 185 (232), 43 (100).
18 NOESY experiments on 3a :
for selected H-H interactions, see Figure
[² ]
.
Figure 2
19
Doyle MP.
Bryker WJ.
J. Org. Chem.
1979,
44:
1572
20
Palladium-Catalyzed
Hydroarylation of 1a with 2a Generated In Situ
A solution
of BF3 ˙OEt2 (140 µL, 1.1
mmol) in anhyd THF (1 mL) was cooled at -15 ˚C
and p -aminoacetophenone (135.1 mg, 1
mmol) was added. Then, tert -butyl nitrite
(160 µL, 1.3 mmol) in 1 mL of the same solvent was added
dropwise to the rapidly stirred reaction solution over a period
of 10 min. Following complete addition, the temperature of the solution was
maintained at -15 ˚C for 10 min and subsequently allowed
to warm to 5 ˚C in an ice-water bath over a period of
20 min. Then, the reaction mixture was warmed to r.t. and stirred
at the same temperature till the starting p -amino-acetophenone
was converted into p -acetylbenzenediazo-nium
tetrafluoroborate. The reaction mixture was cooled in an ice bath
and 1a (105.1 mg, 0.50 mmol), Pd(OAc)2 (5.6 mg,
0.025 mmol), i -Pr3 SiH (205 µL,
1.0 mmol), and of anhyd THF (2 mL) were added. The reaction mixture
was allowed to warm to 20 ˚C and stirred at that
temperature for 6 h under argon (the reactor was protected from
light with aluminum film). After this time, the mixture was diluted with
EtOAc, washed with H2 O, dried over Na2 SO4 ,
and concentrated under reduced pressure. The residue was purified
by chromatography on silica gel [n -hexane-EtOAc, 90:10
(v/v)] to afford 106.3 mg (64% yield)
of 3a .
21a
Hatanaka Y.
Hiyama T.
Tetrahedron
Lett.
1990,
31:
2719
21b
Hatanaka Y.
Hiyama T.
J. Am. Chem. Soc.
1990,
112:
7783