Synlett 2008(15): 2379-2383  
DOI: 10.1055/s-2008-1078270
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Total Synthesis of Largazole

Qi Rena, Lu Daia, Hui Zhanga, Wenfei Tana, Zhengshuang Xu*a,b, Tao Ye*a,b
a Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, University Town of Shenzhen, Xili, Nanshan District, Shenzhen 518055, P. R. of China
b Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Fax: +86(852)22641912; e-Mail: bctaoye@inet.polyu.edu.hk;
Further Information

Publication History

Received 16 May 2008
Publication Date:
21 August 2008 (online)

Abstract

The stereocontrolled total synthesis of largazole was accomplished, unambiguously confirming its structure. Key steps included the use of the Nagao thiazolidinethione auxiliary for a diastereoselective acetate aldol reaction, thiazoline-thiazole formation, and macrolactamization by use of the Mukaiyama reagent.

    References and Notes

  • 1a Tan LT. Phytochemistry (Elsevier)  2007,  68:  954 
  • 1b Simmons TL. Andrianasolo E. McPhail K. Flatt P. Gerwick WH. Mol. Cancer Ther.  2005,  4:  333 
  • 1c Singh S. Kate BN. Banerjee UC. Crit. Rev. Biotechnol.  2005,  25:  73 
  • 1d Luesch H. Harrigan GG. Goetz G. Horgen FD. Curr. Med. Chem.  2002,  9:  1791 
  • 1e Proksch P. Edrada RA. Ebel R. Appl. Microbiol. Biotechnol.  2002,  59:  125 
  • 1f Burja AM. Banaigs B. Abou-Mansour E. Burgess JG. Wright PC. Tetrahedron  2001,  57:  9347 
  • 1g Gerwick WH. Tan LT. Sitachitta N. The Alkaloids   Vol. 57:  Cordell GA. Academic Press; San Diego: 2001.  p.75-184  
  • 1h Fusetani N. Drugs from the Sea   Karger; Basel: 2000. 
  • 2a Gerwick WH. Proteau PJ. Nagle DG. Hamel E. Blokhin A. Slate DL. J. Org. Chem.  1994,  59:  1243 
  • 2b Muir JC. Pattenden G. Ye T. J. Chem. Soc., Perkin Trans. 1  2002,  20:  2243 
  • 2c Poncet J. Curr. Pharm. Des.  1999,  5:  139 
  • 3a Luesch H. Yoshida WY. Moore RE. Paul VJ. Corbett TH. J. Am. Chem. Soc.  2001,  123:  5418 
  • 3b Marquez BL. Watts KS. Yokochi A. Roberts MA. Verdier-Pinard P. Jimenez JI. Hamel E. Scheuer PJ. Gerwick WH. J. Nat. Prod.  2002,  65:  866 
  • 4a Wu M. Okino T. Nogle LM. Marquez BL. Williamson RT. Sitachitta N. Berman FW. Murray TF. McGough K. Jocobs R. Colsen K. Asano T. Yokokawa F. Shioiri T. Gerwick WH. J. Am. Chem. Soc.  2000,  122:  12041 
  • 4b Orjala J. Nagle DG. Hsu V. Gerwick WH. J. Am. Chem. Soc.  1995,  117:  8281 
  • 5a Sielaff H. Christiansen G. Schwecke T. Idrugs  2006,  9:  119 
  • 5b Frenz JL. Kohl AC. Kerr RG. Expert Opin. Ther. Pat.  2004,  14:  17 
  • 5c Proksch P. Edrada RA. Ebel R. Appl. Microbiol. Biotechnol.  2002,  59:  125 
  • 6a Chen Z. Ye T. New J. Chem.  2006,  30:  518 
  • 6b Pang HW. Xu ZS. Chen ZY. Ye T. Lett. Org. Chem.  2005,  2:  699 
  • 6c Peng YG. Pang HW. Xu ZS. Ye T. Lett. Org. Chem.  2005,  2:  703 
  • 6d Peng YG. Pang HW. Ye T. Org. Lett.  2004,  6:  3781 
  • 6e Xu ZS. Chen ZY. Ye T. Tetrahedron: Asymmetry  2004,  15:  355 
  • 6f Xu ZS. Peng YG. Ye T. Org. Lett.  2003,  5:  2821 
  • 6g Chen ZY. Deng JG. Ye T. ARKIVOC  2003,  (vii):  268 
  • 7a Chen J. Forsyth CJ. Org. Lett.  2003,  5:  1281 ; and references cited therein
  • 7b Cetusic JRP. Green FR. Graupner PR. Oliver MP. Org. Lett.  2002,  4:  1307 
  • 7c Pettit GR. Singh SB. Hogan F. Lloyd-Williams P. Herald DL. Burkett DD. Clewlow PJ. J. Am. Chem. Soc.  1989,  111:  5463 
  • 8 Taori K. Paul VJ. Luesch H. J. Am. Chem. Soc.  2008,  130:  1806 
  • 9a Demel P. Keller M. Breit B. Chem. Eur. J.  2006,  12:  6669 
  • 9b Eberle MK. Weber HP. J. Org. Chem.  1988,  53:  231 
  • 9c Boulaajaj S. Le Gall T. Vaultier M. Gree R. Toupet L. Carrie R. Tetrahedron Lett.  1987,  28:  1761 
  • 10a Nagao Y. Hagiwara Y. Kumagai T. Ochiai M. Inoue T. Hashimoto K. Fujita E. J. Org. Chem.  1986,  51:  2391 
  • 10b White JD. Martin WHC. Lincoln C. Yang J. Org. Lett.  2007,  9:  3481 
  • 10c Janssen D. Kalesse M. Synlett  2007,  2667 
  • 10d Scheerer JR. Lawrence JF. Wang GC. Evans DA. J. Am. Chem. Soc.  2007,  129:  8968 
  • 10e Smith AB. Simov V. Org. Lett.  2006,  8:  3315 
  • 10f Paterson I. Steven A. Luckhurst CA. Org. Biomol. Chem.  2004,  2:  3026 
  • 10g Romo D. Choi NS. Li S. Buchler I. Shi Z. Liu JO. J. Am. Chem. Soc.  2004,  126:  10582 
  • 10h Velazquez F. Olivo HF. Curr. Org. Chem.  2002,  6:  303 
  • 10i Sinz CJ. Rychnovsky SD. Angew. Chem. Int. Ed.  2001,  40:  3224 
  • 10j Aiguadé J. González A. Urpí F. Vilarrasa J. Tetrahedron Lett.  1996,  37:  8949 
  • 11a Boyce RJ. Mulqueen GC. Pattenden G. Tetrahedron  1995,  51:  7321 
  • 11b Pattenden G. Thom SM. Jones MF. Tetrahedron  1993,  49:  2131 
  • 12 McDougal PG. Rico JG. Oh Y.-I. Condon BD. J. Org. Chem.  1986,  51:  3388 
  • 13 Dhokte UP. Khau VV. Hutchison DR. Martinelli MJ. Tetrahedron Lett.  1998,  39:  8771 
  • 15a Aguilar E. Meyers AI. Tetrahedron Lett.  1994,  35:  2473 
  • 15b Bredenkamp MW. Holzapfel CW. van Zyl WJ. Synth. Commun.  1990,  20:  2235 
  • 16 Bernier J.-L. Houssin R. Hénichart J.-P. Tetrahedron  1986,  42:  2695 
  • 17 Yamato E. Sugasawa S. Tetrahedron Lett.  1970,  11:  4383 
  • 18 Rabanal F. DeGrado WF. Dutton PL. Tetrahedron Lett.  1996,  1347 
14

Procedure for the Preparation of Intermediate 13
(R)-3-Acetyl-4-isopropyl-1,3-thiazolidine-2-thione (12, 821 mg, 4.0 mmol) was dissolved in CH2Cl2 (10 mL), TiCl4 (751 mg, 4.0 mol) was added at 0 ˚C. After 5 min, the reaction was brought to -78 ˚C, DIPEA (516 mg, 4.0 mmol) was added via a syringe over 10 min. The reaction was kept at -78 ˚C for 2 h before aldehyde 11 (428.3 mg, 2.0 mmol) in CH2Cl2 (3 mL) was added dropwise. Saturated NH4Cl (20 mL) was added to the reaction mixture and CH2Cl2 (3 × 30 mL) was used for extraction. The combined organic phases were dried over anhyd MgSO4 and concentrated in vacuo to give the crude product, which was purified by chromatogra-phy on SiO2, eluting with EtOAc-hexane (1:8), to afford the desired compound 13 (692.1 mg, 83%) along with the minor isomer (53.2 mg, 6%).

19

Cyclodepsipeptide 20
[α]D ²0 17.5 (c 0.2, MeOH). ¹H NMR (500 MHz, CDCl3): δ = 7.75 (s, 1 H), 7.18 (d, 1 H, J = 9.3 Hz), 6.50 (dd, 1 H, J = 2.7, 9.0 Hz), 5.88 (dd, 1 H, J = 6.9, 14.6 Hz), 5.65-5.71 (m, 1 H), 5.54 (dd, 1 H, J = 6.7, 15.5 Hz), 5.26 (dd, 1 H, J = 9.4, 17.6 Hz), 4.60 (dd, 1 H, J = 3.6, 9.4 Hz), 4.27 (dd, 1 H, J = 3.1, 17.6 Hz), 4.03 (d, 1 H, J = 11.3 Hz), 3.28 (t, 1 H, J = 10.5 Hz), 2.85 (dd, 1 H, J = 9.9, 16.3 Hz), 2.67-2.75 (m, 3 H), 2.37-2.46 (m, 2 H), 2.06-2.14 (m, 1 H), 1.86 (s, 3 H), 1.32 (s, 9 H), 0.68 (d, 3 H, J = 6.9 Hz), 0.53 (d, 3 H, J = 6.9 Hz). ¹³C NMR (125 MHz, CDCl3): δ = 173.5, 169.3, 168.8, 167.9, 164.5, 147.4, 132.8, 128.1, 124.1, 84.3, 71.9, 57.7, 47.8, 43.2, 41.0, 40.4, 39.4, 34.0, 31.8, 29.9, 24.1, 18.8, 16.6. ESI-MS: m/z (%) = 585.17 (100.0), 607.15 (88.8). ESI-HRMS: m/z calcd for C25H37N4O4S4 [M + H]+: 585.1698; found [M + H]+: 585.1689.

20

Procedure for the Synthesis of Largazole (1)
Compound 20 (9.9 mg, 0.02 mmol) was dissolved in degassed THF-H2O (v/v = 4:1, 2 mL) and treated with n-Bu3P (6.1 mg, 0.03 mmol) at r.t. for 6 h. The reaction solution was made up to 50 mL with EtOAc and dried over anhyd Na2SO4. The free thiol intermediate was obtained after removal of solvent in vacuo. The thiol intermediate was then dissolved in CH2Cl2 (5 mL), DIPEA (21.9 mg, 0.17 mmol), and octanoyl chloride (22 mg, 0.136 mmol) was added at 0 ˚C followed by a catalytic quantity of DMAP. The reaction mixture was stirred at r.t. for 10 min and then quenched by sat. NaHCO3 (5 mL). CH2Cl2 (3 × 30 mL) was used for extraction. The combined organic phases were dried over anhyd Na2SO4 and concentrated in vacuo to give the crude product. Purification with chromatography on SiO2, using EtOAc-hexane (2:1), provided the target molecule 1 (8.2 mg, 0.0132 mmol, 78%).
[α]D ²0 18.5 (c 0.2, MeOH). ¹H NMR (500 MHz, CDCl3): δ = 7.76 (s, 1 H), 7.15 (d, 1 H, J = 9.3 Hz), 6.46 (dd, 1 H, J = 2.6, 9.5 Hz), 5.80-5.84 (m, 1 H), 5.65-5.68 (m, 1 H), 5.51 (dd, 1 H, J = 7.1, 15.5 Hz), 5.29 (dd, 1 H, J = 9.4, 17.6 Hz), 4.61 (dd, 1 H, J = 3.3, 9.2 Hz), 4.27 (dd, 1 H, J = 2.8, 17.6 Hz), 4.05 (d, 1 H, J = 11.3Hz), 3.28 (d, 1 H, J = 11.3 Hz), 2.90 (t, 2 H, J = 7.2 Hz), 2.86 (dd, 1 H, J = 10.5, 16.5 Hz), 2.68 (dd, 1 H, J = 2.0, 16.3 Hz), 2.53 (t, 2 H, J = 7.4 Hz), 2.29-2.33 (m, 2 H), 2.07-2.13 (m, 1 H), 1.87 (s, 3 H), 1.62-1.66 (m, 2 H), 1.25-1.30 (m, 8 H), 0.87 (t, 3 H, J = 6.8 Hz), 0.69 (d, 3 H, J = 7.0 Hz), 0.51 (d, 3 H, J = 7.1 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 199.4, 173.5, 169.4, 168.9, 167.9, 164.6, 147.4, 132.7, 128.4, 124.2, 84.4, 72.1, 57.7, 44.1, 43.3, 41.1, 40.4, 34.2, 32.2, 31.6, 29.0, 28.9, 27.9, 25.6, 24.2, 22.6, 18.9, 16.6, 14.0. ESI-MS: m/z (%) = 623.23 (44.5) [M + H]+, 645.21 (100.0) [M + Na]+. ESI-HRMS: m/z calcd for C29H43N4O5S3 [M + H]+: 623.2396; found: 623.2371 [M + H]+.