References and Notes
1
Dolle V.
Fan E.
Nguyen CH.
Aubertin A.-M.
Kirn A.
Andreola ML.
Jamieson G.
Tarrago-Litvak L.
Bisagni EA.
J. Med. Chem.
1995,
38:
4679
2
Casinovi CG.
Grandolini G.
Mercantini R.
Oddo N.
Olivieri R.
Tonolo A.
Tetrahedron Lett.
1968,
3175
3
Dolle RE.
Nicolaou KC.
J. Am. Chem. Soc.
1985,
107:
1695
4
Rigby J.
Balasubramanian N.
J. Org. Chem.
1989,
54:
224
5
Cox RJ.
O’Hagan D.
J. Chem. Soc., Perkin
Trans. 1
1991,
2537
6
Teshima Y.
Shin-ya K.
Shimazu A.
Furihata K.
Chul HS.
Furihata K.
Hayakawa Y.
Nagi K.
Seto H.
J. Antibiot.
1991,
44:
685
7
Rice-Evans CA.
Burdon RH.
Free
Radical Damage and Its Control
Elsevier;
Amsterdam:
1994.
8
Peterlin-Ma L.
Kranjc A.
Marinko P.
Milnek G.
Olmajer T.
Stenger M.
Kikelj D.
Bioorg.
Med. Chem.
2003,
13:
3171
9
Sarri WS.
Wai JS.
Fisher TE.
Thomas CM.
Hoffman JM.
Rooney CS.
Smith AM.
Jones JH.
Bamberger DL.
Goldman ME.
O’Brien JA.
Nunberg JH.
Quintero JC.
Schlief WA.
Emini EA.
Anderson PS.
J.
Med. Chem.
1992,
35:
3792
10
Hanessian S.
McNaughton-Smith G.
Lombart H.-G.
Lubell WD.
Tetrahedron
1997,
53:
12789
11
Creswell MW.
Balton GL.
Hodges JC.
Meppen M.
Tetrahedron
1998,
54:
3983
12
Feng Z.
Lubell WD.
J. Org. Chem.
2001,
66:
1181
13
Polyak F.
Lubell WD.
J. Org. Chem.
2001,
66:
1171
14
Schreiber SL.
Science
2000,
287:
1964
15
Heck S.
Dömling A.
Synlett
2000,
424
16a
Gallop MA.
Banett RW.
Dower WJ.
Fodor SPA.
Gallop MA.
J.
Med. Chem.
1994,
37:
1385
16b
Lowe G.
Chem.
Soc. Rev.
1995,
37:
309
16c
Fruchtel JS.
Jung G.
Angew. Chem.,
Int. Ed. Engl.
1996,
35:
17
16d
Thompson LA.
Ellman JA.
Chem.
Rev.
1996,
96:
555
16e
Tenett NK.
Combinatorial Chemistry
Oxford University
Press;
Oxford:
1998.
17
Armstrong RW.
Combs AP.
Tempest PA.
Brown
SD.
Keating TA.
Acc. Chem. Res.
1996,
29:
123
18
Tietz LF.
Lieb ME.
Curr. Opin. Chem. Biol.
1998,
2:
363
19
Dax SLMC.
Nally JJ.
Youngman MA.
Curr. Med. Chem.
1999,
6:
255
20
Domling A.
Comb.
Chem. High Throughput Screening
1988,
1:
1
21
Ugi I.
Domling A.
Horl W.
Endeavour
1994,
18:
115
22a
Dai W.-M.
Li H.
Tetrahedron
2007,
63:
12866
22b
Ghosh R.
Maliti S.
Chakraborty A.
Chakraborty S.
Mukherjee AK.
Tetrahedron
2006,
62:
4059
22c
Church TL.
Byrne CM.
Lobkovsky EB.
Coates GW.
J.
Am. Chem. Soc.
2007,
129:
8156
23a
Fadini L.
Togini A.
Chem.
Commun.
2003,
30
23b
Sani M.
Briche L.
Chiva G.
Fustero S.
Piera J.
Volonterio A.
Zanda M.
Angew. Chem.
Int. Ed.
2003,
22:
2060
23c
Zhuang W.
Hazell RG.
Jorgensen KA.
Chem. Commun.
2001,
1240
23d
Yammamoto H.
Lewis Acids in Organic Synthesis
Wiley-VCH;
Weinheim:
2000.
24
Eisner U.
Kuthan J.
Chem. Rev.
1972,
72:
1
25
Maquestiau A.
Mayence A.
Vanden Eynde JJ.
Tetrahedron Lett.
1991,
32:
3839
26
Vanden Eynde JJ.
Mayence A.
Maquestiau A.
Tetrahedron
1992,
48:
463
27
Vanden Eynde JJ.
Delfosse F.
Mayence A.
Van Haverbeke YV.
Tetrahedron
1995,
51:
6511
28
Vanden Eynde JJ.
Mayence A.
Molecules
2003,
8:
381
29
Gordeev MF.
Patel DV.
Wu J.
Gordon EM.
Tetrahedron Lett.
1996,
37:
4643
30a
Yadav LDS.
Rai A.
Rai VK.
Awasthi C.
Tetrahedron
Lett.
2008,
49:
687
30b
Yadav LDS.
Rai A.
Rai VK.
Awasthi C.
Synlett
2007,
1905
30c
Yadav LDS.
Rai VK.
Tetrahedron
2007,
63:
6924
30d
Yadav LDS.
Yadav S.
Rai VK.
Green Chem.
2006,
8:
455
30e
Yadav LDS.
Yadav S.
Rai VK.
Tetrahedron
2005,
61:
10013
31
VandenBerg GE.
Harrison B.
Carter HE.
Magerlein BJ.
Org. Synth., Coll.
1973,
Vol.
V:
946
32
Bartoli G.
Fernández-Bolaňos JG.
Antonio GD.
Foglia G.
Giuli S.
Gunnella R.
Mancinelli M.
Marcantoni E.
Paoletti M.
J. Org. Chem.
2007,
72:
6029 ; and references cited therein
33
General Procedure
for the Synthesis of 3-Benzamido-2 (1
H
)-pyridinones 5
A mixture of 1,3-oxazolon-5-one 1 (5 mmol), chalcone 2 (5 mmol),
amine 3 (5 mmol), CeCl3˙7H2O
(1 mmol), and NaI (1 mmol) in EtOH (25 mL) was stirred at r.t. for
3-5 h. After completion of the reaction, as indicated by
TLC (hexane-EtOAc, 8:2, v/v), the solvent was
evaporated under reduced pressure, the residue thus obtained extracted
with Et2O (3 × 15 mL). The
extract was evaporated to leave the crude product which was recrystallized
from EtOH to afford a distereomeric mixture (>96:<4;
in the crude products the ratio was >94:6 as indicated
by ¹H NMR spectroscopy). The product on second
recrystallization from EtOH furnished analytically pure pale yellow
crystal of a single diastereomer 4, which
was assigned the trans stereochemistry
on the basis of ¹H NMR spectra.
Characterization
Data for Representative Compounds
Compound 7 (Ar¹ = Ar² = R = Ph):
pale yellow crystals; yield 82%; mp 124-125 ˚C.
IR (KBr): νmax = 3340,
3023, 1745, 1642, 1605, 1585, 1455, 755, 712 cm.-¹. ¹H
NMR (400 MHz, DMSO-d
6 and
D2O-TMS): δ = 3.99
(d, 1 H, J = 10.0 Hz,
3-H), 4.19 (dd, 1 H, J = 10.0,
5.9 Hz, 4-H), 5.93 (d, 1 H, J = 5.9
Hz, 5-H), 7.10-7.70 (m, 20 Harom). ¹³C
NMR(100 MHz, DMSO-d
6): δ = 39.9,
59.0, 114.2, 117.6, 119.0, 120.1, 121.3, 124.0, 125.2, 126.4, 127.5,
128.5, 129.6, 130.8, 132.0, 133.1, 134.2, 135.5, 137.4, 143.4, 172.6,
174.2. MS (EI): m/z = 444 [M+].
Anal. Calcd for C30H24N2O2:
C, 81.06; H, 5.44; N, 6.30. Found: C, 80.70; H, 5.74; N, 6.10.
Compound 7 (Ar¹ = 4-MeOC6H4;
Ar² = R = Ph):
pale yellow crystals; yield 80%; mp 133-134 ˚C.
IR (KBr): 3340, 3021, 1742, 1640, 1600, 1582, 1400, 752, 710 cm.-¹. ¹H NMR
(400 MHz, DMSO-d
6 and D2O-TMS): δ = 3.79
(s, 3 H, OMe), 4.01 (d, 1 H, J = 10.0
Hz, 3-H), 4.18 (dd, 1 H, J = 10.0,
5.9 Hz, 4-H), 5.99 (d, 1 H, J = 5.9
Hz, 5-H), 7.18-7.99 (m, 19 Harom). ¹³C
NMR (100 MHz, DMSO-d
6): δ = 39.2,
56.0, 59.2, 114.0, 117.5, 119.2, 120.3, 122.4, 124.0, 125.1, 126.2,
127.3, 128.3, 129.4, 130.5, 131.6, 132.9, 134.0, 135.2, 137.5, 143.9,
172.9, 174.8. MS (EI):
m/z = 474 [M+].
Anal. Calcd for C31H26N2O3:
C, 78.46; H, 5.52; N, 5.90. Found: C, 78.81; H, 5.30; N, 5.56.
34
General Procedure
for the Synthesis of 3-Amino-2 (1
H
)-Pyridinone 4
Compound 5 (2.0 mmol) was refluxed in H2SO4-H2O
(15 mL, 4:3, v/v) for 30 min in an oil bath. The reaction
mixture was cooled, filtered, and the desired product 4 was precipitated by adding concentrated
NH4OH (d = 0.88) under ice
cooling and recrystallized from EtOH to afford an analytically pure
sample of 4 (Table
[¹]
).
Characterization
Data for Representative Compounds
Compound 4 (Table
[²]
,
entry 1): pale yellow crystals; yield 90%; mp 135-134 ˚C.
IR (KBr): 3342, 3011, 1699, 1608, 1540, 1430, 749, 703 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6 and
D2O-TMS): δ = 3.96
(d, 1 H, J = 9.9
Hz, 3-H), 4.15 (dd, 1 H, J = 9.9,
5.9 Hz, 4-H), 5.90 (d, 1 H, J = 5.9
Hz, 5-H), 7.19-7.90 (m, 15 Harom). ¹³C
NMR(100 MHz, DMSO-d
6
): δ = 39.7,
58.5, 114.0, 120.0, 122.1, 125.0, 126.2, 127.4, 128.7, 129.8, 130.8,
131.9, 133.0, 134.7, 141.0, 143.0, 172.6. MS (EI): m/z = 340 [M+].
Anal. Calcd for C23H20N2O: C, 81.15;
H, 5.92; N, 8.23. Found: C, 80.83; H, 5.62; N, 8.43.
Compound 4 (Table
[²]
,
entry 7): pale yellow crystals; yield 87%; mp 140-141 ˚C.
IR (KBr): νmax = 3340,
3021, 1742, 1640, 1600, 1582, 1400, 752, 710 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6 and
D2O-TMS): δ = 3.78
(s, 3 H, OMe), 3.98 (d, 1 H, J = 9.9
Hz, 3-H), 4.13 (dd, 1 H, J = 9.9,
5.9 Hz, 4-H), 5.92 (d, 1 H, J = 5.9
Hz, 5-H), 7.19-7.86 (m, 14 Harom). ¹³C
NMR (100 MHz, DMSO-d
6
): δ = 39.2,
55.6, 58.3, 114.1, 120.2, 122.0, 125.1, 126.3, 127.5, 128.5, 129.8,
130.9, 132.0, 133.6, 134.8, 141.2, 144.0, 172.4. MS (EI): m/z = 370 [M+].
Anal. Calcd for C24H22N2O2:
C, 77.81; H, 5.99; N, 7.56. Found: C, 78.12; H, 6.29; N, 7.26.