RSS-Feed abonnieren
DOI: 10.1055/s-2008-1078422
Allylic Substitution of meso-1,4-Diacetoxycycloalkenes in Water with an Amphiphilic Resin-Supported Chiral Palladium Complex
Publikationsverlauf
Publikationsdatum:
16. Mai 2008 (online)
Abstract
Asymmetric π-allylic substitution of meso-1,4-diacetoxycyclopentene and meso-1,4-diacetoxycyclohexene with various nucleophiles was performed with an amphiphilic polystyrene-poly(ethylene glycol) (PS-PEG) resin-supported chiral imidazoindolephosphine-palladium complex in water as a single reaction medium under heterogeneous conditions to give the corresponding 1-acetoxy-4-substituted cycloalkenes with up to 99% ee.
Key words
π-allylpalladium - asymmetric catalysis - aqueous media - polymer support - palladium catalyst
- For reviews on aqueous-switching of organic transformations, see:
-
1a
Li C.-J.Chan T.-H. Organic Reactions in Aqueous Media Wiley; New York: 1997. -
1b
Grieco PA. Organic Synthesis in Water Kluwer Academic Publishers; Dordrecht: 1997. -
1c
Herrmann WA.Kohlpaintner CW. Angew. Chem., Int. Ed. Engl. 1993, 32: 1524 -
1d
Lindström UM. Chem. Rev. 2002, 102: 2751 - For reviews on heterogeneous-switching of organic transformations, see:
-
2a
Bailey DC.Langer SH. Chem. Rev. 1981, 81: 109 -
2b
Shuttleworth SJ.Allin SM.Sharma PK. Synthesis 1997, 1217 -
2c
Shuttleworth SJ.Allin SM.Wilson RD.Nasturica D. Synthesis 2000, 1035 -
2d
Dörwald FZ. Organic Synthesis on Solid Phase Wiley-VCH; Weinheim: 2000. -
2e
Leadbeater NE.Marco M. Chem. Rev. 2002, 102: 3217 -
2f
Ley SV.Baxendale IR.Bream RN.Jackson PS.Leach AG.Longbottom DA.Nesi M.Scott JS.Storer RI.Taylor SJ. J. Chem. Soc., Perkin Trans. 1 2000, 3815 -
2g
McNamara CA.Dixon MJ.Bradley M. Chem. Rev. 2002, 102: 3275 -
2h
Chiral Catalyst Immobilization and Recycling
De Vos DE.Vankelecom IFJ.Jacobs PA. Wiley-VCH; Weinheim: 2000. -
2i
Fan Q.-H.Li Y.-M.Chan ASC. Chem. Rev. 2002, 102: 3385 - For recent reviews on solid-phase reactions using palladium catalysts, see:
-
3a
Uozumi Y.Hayashi T. Solid-Phase Palladium Catalysis for High-Throughput Organic Synthesis, In Handbook of Combinatorial ChemistryNicolaou KC.Hanko R.Hartwig W. Wiley-VCH; Weinheim: 2002. Chap. 19. -
3b
Uozumi Y. Top. Curr. Chem. 2004, 242: 77 - For studies on polymer-supported catalysts from the author’s group, see:
-
4a Cross-coupling:
Uozumi Y.Danjo H.Hayashi T. J. Org. Chem. 1999, 64: 3384 -
4b Carbonylation reaction:
Uozumi Y.Watanabe T. J. Org. Chem. 1999, 64: 6921 -
4c Michael addition:
Shibatomi K.Nakahashi T.Uozumi Y. Synlett 2000, 1643 - Suzuki-Miyaura coupling:
-
4d
Uozumi Y.Nakai Y. Org. Lett. 2002, 4: 2997 -
4e
Uozumi Y.Kikuchi M. Synlett 2005, 1775 -
4f Heck reaction:
Uozumi Y.Kimura T. Synlett 2002, 2045 -
4g Rhodium catalysis:
Uozumi Y.Nakazono M. Adv. Synth. Catal. 2002, 344: 274 - (Wacker cyclization):
-
4h
Hocke H.Uozumi Y. Synlett 2002, 2049 -
4i
Hocke H.Uozumi Y. Tetrahedron 2003, 59: 619 -
4j Sonogashira reaction:
Uozumi Y.Kobayashi Y. Heterocycles 2003, 59: 71 - Oxidation:
-
4k
Uozumi Y.Nakao R. Angew. Chem. Int. Ed. 2003, 42: 194 -
4l
Uozumi Y.Nakao R. Angew. Chem. 2003, 115: 204 -
4m
Yamada YMA.Arakawa T.Hocke H.Uozumi Y. Angew. Chem. Int. Ed. 2007, 46: 704 -
4n Reduction:
Nakao R.Rhee H.Uozumi Y. Org. Lett. 2005, 7: 163 -
4o Alkylation:
Yamada YMA.Uozumi Y. Org. Lett. 2006, 8: 1375 - For studies on π-allylic transformations with polymer-supported complex catalysts in water, see:
-
5a
Uozumi Y.Danjo H.Hayashi T. Tetrahedron Lett. 1997, 38: 3557 -
5b
Danjo H.Tanaka D.Hayashi T.Uozumi Y. Tetrahedron 1999, 55: 14341 -
5c
Uozumi Y.Suzuka T.Kawade R.Takenaka H. Synlett 2006, 2109 - For studies on heterogeneous aquacatalytic asymmetric π-allylic transformations with polymer-supported complex catalysts in water, see:
-
6a Alkylation:
Uozumi Y.Danjo H.Hayashi T. Tetrahedron Lett. 1998, 39: 8303 -
6b Reduction with monodentate phosphine (MOP):
Hocke H.Uozumi Y. Tetrahedron 2004, 60: 9297 -
6c Alkylation:
Uozumi Y.Shibatomi K. J. Am. Chem. Soc. 2001, 123: 2919 -
6d Amination:
Uozumi Y.Tanaka H.Shibatomi K. Org. Lett. 2004, 6: 281 -
6e Cyclization:
Nakai Y.Uozumi Y. Org. Lett. 2005, 7: 291 -
6f Etherification:
Uozumi Y.Kimura M. Tetrahedron: Asymmetry 2006, 17: 161 -
6g Nitromethylation:
Uozumi Y.Suzuka T. J. Org. Chem. 2006, 71: 8644 -
6h
Kobayashi Y.Tanaka D.Danjo H.Uozumi Y. Adv. Synth. Catal. 2006, 348: 1561 -
6i
Uozumi Y. Pure Appl. Chem. 2007, 79: 1481 - For recent reviews on asymmetric π-allylic substitution, see:
-
7a
Acemoglu L.Williams JMJ. Handbook of Organopalladium Chemistry for Organic SynthesisNegishi E.de Meijere A. Wiley; New York: 2002. -
7b
Trost BM.Crawley ML. Chem. Rev. 2003, 103: 2921 -
8a
Taniimori S.Tsuji Y.Kirihara M. Biosci., Biotechnol., Biochem. 2002, 66: 660 -
8b
Song ES.Yang JW.Roh EJ.Lee S.-G.Han H. Angew. Chem. Int. Ed. 2002, 41: 3852 -
8c
Trost BM.Van Vranken DL.Bingel C. J. Am. Chem. Soc. 1992, 114: 9327 -
9d Trost B. M., Pulley S. R., Bingel C.; Tetrahedron Lett.; 1995, 36: 8737
- 13
Nishiyama H.Sakata N.Sugimoto H.Motoyama Y.Wakita H.Nagase H. Synlett 1998, 930
References and Notes
Tenta Gel SNH2 (purchased from Rapp Polymere) was used as the polymer support.
11Chemical yield of the monosubstituted product 4 was lowered to <30% with Li2CO3, NaHCO3, Na2CO3, or K2CO3.
12The absolute configuration of 4 was determined by chemical correlation with (1R,4S)-cis-1-acetoxy-4-[bis(methoxy-carbonyl)methyl]-2-cyclopentene (see ref. 8a).
14The absolute configuration of 6a was determined to be 1R,4S by measurement of the specific rotation (see, ref. 12). The configurations of 6b-g were tentatively assigned on the basis of the mechanistic similarity of the asymmetric induction, as depicted in Table [1] .
15
Palladium-Catalyzed Asymmetric Desymmetrization of meso
-Cycloalkene-1,4-diacetate: Reaction conditions and results are shown in Table
[1]
. A typical procedure is given for the reaction with cis-1,4-diacetoxycyclopentene (meso-2) and phenol (a) in H2O (entry 3).
To a mixture of the catalyst 1 (89 mg, 0.025 mmol) and meso-2 (92 mg, 0.5 mmol) in H2O (2.5 mL) was added phenol (48 mg, 0.5 mmol), and the mixture was shaken at 0 °C for 18 h. The reaction mixture was filtered and the recovered resin beads were rinsed with EtOAc (3 ×). The combined filtrate was dried over anhyd Na2SO4. The solvent was evaporated and the residue was chromatographed on silica gel (hexane-EtOAc, 10:1) to give 1-acetoxy-4-phenoxycyclopentene (6a; 70 mg, 64% yield) and 1,4-diphenoxycyclopentene (8; 18 mg). The enantiomeric excess was determined to be 99% ee by GC analysis using a chiral stationary phase capillary column (Cyclodex CB).
Spectral and analytical data for compounds 6 are shown below, where the enantiomeric excesses were determined by GC (Cyclodex CB), unless otherwise noted: 1-Acetoxy-4-phenoxycyclopentene (6a): [α]D
23 +63.8 (c = 1.0, CHCl3). 1H NMR (CDCl3): δ = 7.29 (t, J = 7.8 Hz, 2 H), 6.96 (t, J = 7.3 Hz, 1 H), 6.92 (d, J = 7.8 Hz, 2 H), 6.24 (d, J = 5.8 Hz, 1 H), 6.12 (d, J = 5.3 Hz, 1 H), 5.61 (br, 1 H), 5.17 (br, 1 H), 2.97 (dt, J = 7.3, 14.6 Hz, 1 H), 2.05 (s, 3 H), 1.89 (dt, J = 4.0, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 170.77, 157.77, 135.05, 134.06, 129.53, 115.34, 79.55, 76.74, 37.94, 21.08. IR (ATR): 1733, 1493, 1366, 1228, 1087, 889, 754, 692, 628 cm-1. MS (EI): m/z (%rel intensity) = 218 (0.7) [M+], 43 (base peak). Anal. Calcd for C13H14O3: C, 71.54; H, 6.47. Found: C, 71.49; H, 6.53. CAS registry number: 210701-09-0.
1-Acetoxy-4-(2-benzyloxyphenoxy)-2-cyclopentene (6b): [α]D
28 -20.5 (c = 1.0, CHCl3); 97% ee. 1H NMR (CDCl3): δ = 7.43-7.27 (m, 4 H), 6.89-6.98 (m, 5 H), 6.26 (br d, J = 4.8 Hz, 1 H), 6.09 (br d, J = 4.8 Hz, 1 H), 5.57 (br, 1 H), 5.17 (br, 1 H), 5.12 (s, 2 H), 2.93 (dt, J = 7.3, 14.6 Hz, 1 H), 2.04 (s, 3 H), 1.98 (dt, J = 4.3, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 170.88, 149.49, 148.28, 137.32, 134.67, 133.73, 128.45, 127.78, 127.29, 122.21, 121.70, 117.09, 115.60, 81.72, 76.79, 71.31, 38.08, 21.13. IR (ATR): 1732, 1499, 1452, 1366, 1236, 1212, 1083, 1012, 896, 742, 697, 627 cm-1. MS (EI): m/z (%rel intensity) = 324 (1) [M+], 91 (base peak). Anal Calcd for C20H20O4: C, 74.06; H, 6.21. Found: C, 73.94; H, 6.28.
1-Acetoxy-4-(2-chlorophenoxy)-2-cyclopentene (6c): [α]D
26 -58.0 (c = 1.0, CHCl3). 1H NMR (CDCl3): δ = 7.37 (dd, J = 1.8, 7.9 Hz, 1 H), 7.20 (dt, J = 1.8, 7.9 Hz, 1 H), 6.95 (d, J = 7.9 Hz, 1 H), 6.92 (t, J = 7.9 Hz, 1 H), 6.26 (d, J = 5.5 Hz, 1 H), 6.14 (J = 5.5 Hz, 1 H), 5.60 (br, 1 H), 5.17 (br, 1 H), 2.99 (dt, J = 7.3, 14.6 Hz, 1 H), 2.06 (s, 3 H), 1.96 (dt, J = 4.3, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 170.84, 153.65, 134.65, 134.46, 130.57, 127.66, 123.71, 121.94, 115.26, 81.33, 76.61, 38.02, 21.11. IR (ATR): 1237, 1090, 902, 730, 649, 630 cm-1. MS (EI): m/z (%rel intensity): = 252 (0.02) [M+], 43 (base peak).
1-Acetoxy-4-(2-bromophenoxy)-2-cyclopentene (6d): [α]D
25 -100.8 (c = 1.1, CHCl3); 95% ee. 1H NMR (CDCl3): δ = 7.55 (dd, J = 1.2, 7.9 Hz, 1 H), 7.25 (td, J = 1.2, 7.3 Hz, 1 H), 6.94 (d, J = 1.2 Hz, 1 H), 6.85 (td, J = 1.2, 7.9 Hz, 1 H), 6.26 (d, J = 5.5 Hz, 1 H), 6.14 (d, J = 5.5 Hz, 1 H), 5.60 (br t, J = 5.5 Hz, 1 H), 5.17 (br t, J = 5.5 Hz, 1 H), 2.07 (s, 3 H), 2.00 (dt, J = 7.3, 14.6 Hz, 1 H), 1.96 (dt, J = 4.2, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 170.79, 154.52, 134.60, 134.39, 133.61, 128.37, 122.34, 114.99, 113.00, 81.34, 76.55, 38.00, 21.07. IR (ATR): 1733, 1584, 1573, 1474, 1442, 1366, 1085, 1029, 895, 748, 627 cm-1. MS (EI): m/z (%rel intensity) = 296 (0.02) [M+], 43 (base peak). Anal. Calcd for C13H13BrO3: C, 52.55; H, 4.41. Found: C, 52.37; H, 4.37.
1-Acetoxy-4-(2,6-dimethylphenoxy)-2-cyclopentene (6e): [α]D
27 -41.4 (c = 1.1, CHCl3). 1H NMR (CDCl3): δ = 7.02 (d, J = 7.3 Hz, 2 H), 6.92 (t, J = 7.3 Hz, 1 H), 6.16 (d, J = 5.4 Hz, 1 H), 6.05 (d, J = 5.4 Hz, 1 H), 5.52 (br t, J = 4.4 Hz, 1 H), 4.81 (br t, J = 6.3 Hz, 1 H), 2.88 (dt, J = 7.3, 14.6 Hz, 1 H), 2.30 (s, 6 H), 2.09 (s, 3 H), 2.06 (dt, J = 4.4, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 171.09, 155.79, 136.60, 133.37, 131.06, 129.16, 123.95, 84.66, 76.73, 38.51, 21.39, 17.46. IR (ATR): 1730, 1365, 1237, 1198, 1091, 903, 730, 649, 630 cm-1. MS (EI): m/z (%rel intensity) = 246 (0.09) [M+], 43 (base peak). HRMS (EI): m/z [M+] calcd for C15H18O3: 246.1256; found: 246.1251. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Chiralcel OD-H, eluent: n-hexane-2-propanol, 50:1; flow rate: 0.5 mL/min; t
R (major isomer) = 14.73 min and t
R (minor isomer) = 13.98 min] to be 90% ee.
1-Acetoxy-4-(3-methoxyphenoxy)-2-cyclopentene (6f): [α]D
26 +57.5 (c = 1.1, CHCl3); 96% ee. 1H NMR (CDCl3): δ = 7.18 (t, J = 8.5 Hz, 1 H), 6.52 [td, J = 2.4, 8.5 Hz (overlapped), 2 H], 6.48 (t, J = 2.4 Hz, 1 H), 6.24 (d, J = 5.5 Hz, 1 H), 6.13 (d, J = 5.5 Hz, 1 H), 5.60 (br, 1 H), 5.16 (br, 1 H), 3.78 (s, 3 H), 2.96 (dt, J = 7.3, 14.6 Hz, 1 H), 2.05 (s, 3 H), 1.88 (dt, J = 3.9, 14.6 Hz, 1 H). 13C NMR (CDCl3): δ = 170.77, 160.87, 158.99, 134.98, 134.12, 129.95, 107.35, 106.54, 101.88, 79.62, 55.24, 37.90, 21.04. IR (ATR): 1733, 1602, 1491, 1366, 1235, 1199, 1150, 1087, 1015, 891, 837, 765, 687, 629 cm-1. MS (EI): m/z (%rel intensity) = 248 (1) [M+], 43 (base peak). Anal. Calcd for C14H16O4: C, 67.73; H, 6.50. Found: C, 67.51; H, 6.45.
1-Acetoxy-4-(4-tert-buthylphenoxy)-2-cyclopentene (6g): [α]D
27 +148.7 (c = 1.4, CHCl3); 94% ee. 1H NMR (CDCl3): δ = 7.30 (d, J = 8.5 Hz, 2 H), 6.85 (d, J = 8.5 Hz, 2 H), 6.24 (d, J = 5.5 Hz, 1 H), 6.11 (d, J = 5.5 Hz, 1 H), 5.60 (s, 1 H), 5.14 (s, 1 H), 2.96 (dt, J = 7.3, 14.6 Hz, 1 H), 2.05 (s, 3 H), 1.89 (dt, J = 3.9, 14.6 Hz, 1 H), 1.37 (s, 9 H). 13C NMR (CDCl3): δ = 170.79, 155.51, 143.66, 135.25, 133.90, 126.30, 114.78, 79.61, 76.79, 37.98, 34.05, 31.48, 21.08. IR (ATR): 1736, 1511, 1365, 1232, 1185, 1087, 1013, 898, 829, 732, 630 cm-1. MS (EI): m/z (%rel intensity) = 274 (0.2) [M+], 43 (base peak). Anal. Calcd for C17H22O3: C, 74.42; H, 8.08. Found: C, 74.56; H, 8.22.
1-Acetoxy-4-phenoxy-2-cyclohexene (7): 1H NMR (CDCl3): δ = 7.26-7.31 (m, 2 H), 6.92-6.97 (m, 3 H), 6.08 (ddd, J = 1.2, 3.7, 10.0 Hz, 1 H), 6.07 (ddd, J = 1.2, 3.0, 10.0 Hz, 1 H), 5.25 (br s, 1 H), 4.76 (br s, 1 H), 2.07 (s, 3 H), 1.87-2.02 (m, 4 H). 13C NMR (CDCl3): δ = 170.72, 157.52, 131.10, 129.59, 121.06, 115.84, 70.27, 67.38, 24.92, 24.75, 21.27. IR (ATR): 1730, 1597, 1492, 1371, 1226, 1079, 1035, 958, 903, 754, 692 cm-1. MS (EI): m/z = 232 [M+]. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Chiralcel OD-H, eluent: n-hexane-2-propanol, 50:1; flow rate: 0.5 mL/min; t
R (major isomer) = 21.33 min and t
R (minor isomer) = 18.48 min] to be 95% ee.