Thromb Haemost 2005; 93(04): 661-675
DOI: 10.1160/TH04-12-0814
Theme Issue Article
Schattauer GmbH

Transcriptional and posttranscriptional regulation of the plasminogen activator system

Yoshikuni Nagamine
1   Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
,
Robert L. Medcalf
2   Monash University Department of Medicine, Australian Centre for Blood Disease, AMREP, Commercial Road, Praham, Victoria, Australia
,
Pura Muñoz-Cánoves
3   Centre de Regulació Genòmica (CRG), Programa de Diferenciació y Cancer, Barcelona, Spain
› Author Affiliations
Further Information

Publication History

Received 17 December 2004

Accepted after revision 26 January 2005

Publication Date:
14 December 2017 (online)

Summary

The core protein components of the plasminogen activator (PA) system are two plasminogen activators, two plasminogen activator inhibitors and a urokinase type plasminogen activator-specific cell surface receptor. Various types of biological regulation are exerted through the interplay of these components mutually and with extracellular matrix proteins and cell membrane proteins, with or without involving proteolytic activity. Reflecting these diverse biological roles, the level and activity of each component of the PA system is under the control of a variety of regulatory mechanisms. The expression level of a protein reflects the level of the corresponding mRNA, which is essentially the net result of de novo synthesis, i.e. transcription, and degradation. Many recent studies have shown that the regulation of mRNA stability is dynamic and cell specific. Accordingly, we are learning that the mRNAs of the PA system are also the subject of diverse regulatory mechanisms. In this short review, we summarize current understanding of the transcriptional and mRNA-stability regulation of the PA system.

 
  • References

  • 1 Irigoyen JP, Muñoz-Cánoves P, Montero L. et al. The plasminogen activator system: biology and regulation. Cell Mol Life Sci 1999; 56: 104-32.
  • 2 Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 2000; 57: 25-40.
  • 3 Durand MK. et al. Plasminogen activator inhibitor- I and tumour growth, invasion, and metastasis. Thromb Haemost 2004; 91: 438-49.
  • 4 Myohanen H, Vaheri A. Regulation and interactions in the activation of cell-associated plasminogen. Cell Mol Life Sci 2004; 61: 2840-58.
  • 5 Mondino A, Blasi F. uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol 2004; 25: 450-5.
  • 6 Yepes M, Lawrence DA. New functions for an old enzyme: nonhemostatic roles for tissue-type plasminogen activator in the central nervous system. Exp Biol Med 2004; 229: 1097-104.
  • 7 Ross J. Control of messenger RNA stability in higher eukaryotes. Trends Genet 1996; 12: 171-5.
  • 8 Conne B, Stutz A, Vassalli JD. The 3' untranslated region of messenger RNA: A molecular 'hotspot' for pathology?. Nat Med 2000; 6: 637-41.
  • 9 Guhaniyogi J, Brewer G. Regulation of mRNA stability in mammalian cells. Gene 2001; 265: 11-23.
  • 10 Brewer G. Messenger RNA decay during aging and development. Ageing Res Rev 2002; 1: 607-25.
  • 11 Audic Y, Hartley RS. Post-transcriptional regulation in cancer. Biol Cell 2004; 96: 479-98.
  • 12 Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 2004; 11: 121-7
  • 13 Benasciutti E. et al. MAPK and JNK transduction pathways can phosphorylate Sp1 to activate the uPA minimal promoter element and endogenous gene transcription. Blood 2004; 104: 256-62.
  • 14 Verde P, Boast S, Franze A. et al. An upstream enhancer and a negative element in the 5' flanking region of the human urokinase plasminogen activator gene. Nucl Acids Res 1988; 16: 10699-716.
  • 15 D'Orazio D, Besser D, Marksitzer R. et al. Cooperation of two PEA3/AP1 sites in uPA gene induction by TPA and FGF- 2. Gene 1997; 201: 179-87.
  • 16 Vandenbunder B. et al. Expression of the transcription factor c-Ets1 correlates with the occurrence of invasive processes during normal and pathological development. Invasion Metastasis 1994; 14: 198-209.
  • 17 Bolon I. et al. Expression of c-ets-1, collagenase 1, and urokinase-type plasminogen activator genes in lung carcinomas. Am J Pathol 1995; 147: 1298-310.
  • 18 Delannoy-Courdent A. et al. Expression of c-ets-1 and uPA genes is associated with mammary epithelial cell tubulogenesis or neoplastic scattering. Int J Dev Biol 1996; 40: 1097-108.
  • 19 Iwasaka C, Tanaka K, Abe M, Sato Y. Ets-1 regulates angiogenesis by inducing the expression of urokinase- type plasminogen activator and matrix metalloproteinase- 1 and the migration of vascular endothelial cells. J Cell Physiol 1996; 169: 522-31.
  • 20 Chen Z, Fisher RJ, Riggs CW. et al. Inhibition of vascular endothelial growth factor-induced endothelial cell migration by ETS1 antisense oligonucleotides. Cancer Res 1997; 57: 2013-9.
  • 21 Angel P. et al. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 1987; 49: 729-39.
  • 22 Lee W, Mitchell P, Tjian R. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 1987; 49: 741-52.
  • 23 Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991; 1072: 129-57.
  • 24 Woodgett JR. Fos and jun: two into one will go. Semin Cancer Biol 1990; 1: 389-97.
  • 25 Benbrook DM, Jones NC. Heterodimer formation between CREB and JUN proteins. Oncogene 1990; 5: 295-302.
  • 26 Hai T, Curran T. Cross-family dimerization of transcription factors Fos/Jun and ATF /CREB alters DNA binding specificity. Proc Natl Acad Sci U S A 1991; 88: 3720-4.
  • 27 Paul A, Wilson S, Belham CM. et al. Stress-activated protein kinases: activation, regulation and function. Cell Signal 1997; 9: 403-10.
  • 28 Sugden PH, Clerk A. Regulation of the ERK subgroup of MAP kinase cascades through G proteincoupled receptors. Cell Signal 1997; 9: 337-51.
  • 29 Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol 1998; 10: 205-19.
  • 30 Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410: 37-40.
  • 31 Rorth P, Nerlov C, Blasi F, Johnsen M. Transcription factor PEA3 participates in the induction of urokinase plasminogen activator transcription in murine keratinocytes stimulated with epidermal growth factor or phorbol-ester. Nucl Acids Res 1990; 18: 5009-17.
  • 32 Lee JS, von der Ahe D, Kiefer B. et al. Cytoskeletal reorganization and TPA differently modify AP-1 to induce the urokinase-type plasminogen activator gene in LLC-PK1 cells. Nucl Acids Res 1993; 21: 3365-72.
  • 33 Lee JS. et al. Okadaic acid-dependent induction of the urokinase-type plasminogen activator gene associated with stabilization and autoregulation of c- Jun. J Biol Chem 1994; 269: 2887-94.
  • 34 Irigoyen JP, Besser D, Nagamine Y. Cytoskeleton reorganization induces the urokinase-type plasminogen activator gene via the Ras/extracellular signal- regulated kinase (ERK) signaling pathway. J Biol Chem 1997; 272: 1904-9.
  • 35 Besser D, Presta M, Nagamine Y. Elucidation of a signaling pathway induced by FGF-2 leading to uPA gene expression in NIH 3T3 fibroblasts. Cell Growth Differ 1995; 6: 1009-17.
  • 36 Besser D. et al. Regulation of the urokinase-type plasminogen activator gene by the oncogene Tpr-Met involves GRB2. Oncogene 1997; 14: 705-11.
  • 37 Ried S, Jager C, Jeffers M. et al. Activation mechanisms of the urokinase-type plasminogen activator promoter by hepatocyte growth factor/scatter factor. J Biol Chem 1999; 274: 16377-86.
  • 38 Dunn SE, Torres JV, Oh JS. et al. Up-regulation of urokinase-type plasminogen activator by insulin-like growth factor-I depends upon phosphatidylinositol-3 kinase and mitogen-activated protein kinase kinase. Cancer Res 2001; 61: 1367-74.
  • 39 Lengyel E, Stepp E, Gum R. et al. Involvement of a mitogen-activated protein kinase signaling pathway in the regulation of urokinase promoter activity by c-Ha-ras. J Biol Chem 1995; 270: 23007-12.
  • 40 Gum R. et al. Up-regulation of urokinase-type plasminogen activator expression by the HER2/neu proto-oncogene. Anticancer Res 1995; 15: 1167-72.
  • 41 Miralles F, Parra M, Caelles C. et al. UV irradiation induces the murine urokinase-type plasminogen activator gene via the c-Jun N-terminal kinase signaling pathway: requirement of an AP1 enhancer element. Mol Cell Biol 1998; 18: 4537-47.
  • 42 Parra M, Lluis F, Miralles F. et al. The cJun N-terminal kinase (JNK) signaling pathway mediates induction of urokinase-type plasminogen activator (uPA) by the alkylating agent MNNG. Blood 2000; 96: 1415-24.
  • 43 Stacey KJ, Fowles LF, Colman MS. et al. Regulation of urokinase-type plasminogen activator gene transcription by macrophage colony-stimulating factor. Mol Cell Biol 1995; 15: 3430-41.
  • 44 Lengyel E. et al. Stimulation of urokinase expression by TNF-alpha requires the activation of binding sites for the AP-1 and PEA3 transcription factors. Biochim Biophys Acta 1995; 1268: 65-72.
  • 45 Fowles LF, Stacey KJ, Marks D. et al. Regulation of urokinase plasminogen activator gene transcription in the RAW264 murine macrophage cell line by macrophage colony-stimulating factor (CSF-1) is dependent upon the level of cell-surface receptor. Biochem J 2000; 347 Pt 1 313-20
  • 46 Faisal A, Kleiner S, Nagamine Y. Non-redundant role of Shc in Erk activation by cytoskeletal reorganization. J Biol Chem 2004; 279: 3202-11.
  • 47 Koziczak M, Krek W, Nagamine Y. Pocket protein- independent repression of urokinase-type plasminogen activator and plasminogen activator inhibitor 1 gene expression by E2F1. Mol Cell Biol 2000; 20: 2014-22.
  • 48 Hansen SK. et al. A novel complex between the p65 subunit of NF-kappa B and c-Rel binds to a DNA element involved in the phorbol ester induction of the human urokinase gene. Embo J 1992; 11: 205-13.
  • 49 Wang W. et al. Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene 1999; 18: 4554-63.
  • 50 Hapke S, Kessler H, Arroyo de Prada N. et al. Integrin alpha(v)beta(3)/vitronectin interaction affects expression of the urokinase system in human ovarian cancer cells. J Biol Chem 2001; 276: 26340-8.
  • 51 Cannio R, Rennie PS, Blasi F. A cell-type specific and enhancer-dependent silencer in the regulation of the expression of the human urokinase plasminogen activator gene. Nucleic Acids Res 1991; 19: 2303-8.
  • 52 Nagamine Y, Sudol M, Reich E. Hormonal regulation of plasminogen activator mRNA production in porcine kidney cells. Cell 1983; 32: 1181-90.
  • 53 von der Ahe D. et al. Macromolecular interaction on a cAMP responsive region in the urokinase- type plasminogen activator gene: a role of protein phosphorylation. Nucl Acids Res 1990; 18: 1991-9.
  • 54 Sokabe T. et al. Differential regulation of urokinase- type plasminogen activator expression by fluid shear stress in human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol 2004; 287: H2027-34.
  • 55 Miralles F, Ibanez-Tallon I, Parra M. et al. Transcriptional regulation of the murine urokinase-type plasminogen activator gene in skeletal myoblasts. Thromb Haemost 1999; 81: 767-74.
  • 56 Andreasen PA, Kjoller L, Christensen L. et al. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72: 1-22.
  • 57 Hiendlmeyer E, Regus S, Wassermann S. et al. Beta-catenin up-regulates the expression of the urokinase plasminogen activator in human colorectal tumors. Cancer Res 2004; 64: 1209-14.
  • 58 Guo Y, Pakneshan P, Gladu J. et al. Regulation of DNA methylation in human breast cancer. Effect on the urokinase-type plasminogen activator gene production and tumor invasion. J Biol Chem 2002; 277: 41571-9.
  • 59 Pakneshan P, Szyf M, Farias-Eisner R. et al. Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J Biol Chem 2004; 279: 31735-44.
  • 60 Levin EG, del Zoppo GJ. Localization of tissue plasminogen activator in the endothelium of a limited number of vessels. Am J Pathol 1994; 144: 855-61.
  • 61 Chen CS, Lyons-Giordano B, Lazarus GS. et al. Differential expression of plasminogen activators and their inhibitors in an organotypic skin coculture system. J Cell Sci 1993; 106 (Pt 1) 45-53.
  • 62 Teesalu T, Kulla A, Asser T. et al. Tissue plasminogen activator as a key effector in neurobiology and neuropathology. Biochem Soc Trans 2002; 30: 183-9.
  • 63 Rijken DC, Collen D. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J Biol Chem 1981; 256: 7035-41.
  • 64 Neuman T. et al. Induction of morphological differentiation of human neuroblastoma cells is accompanied by induction of tissue-type plasminogen activator. J Neurosci Res 1989; 23: 274-81.
  • 65 Amin W, Karlan BY, Littlefield BA. Glucocorticoid sensitivity of OVCA 433 human ovarian carcinoma cells: inhibition of plasminogen activators, cell growth, and morphological alterations. Cancer Res 1987; 47: 6040-5.
  • 66 Darrow AL, Rickles RJ, Pecorino LT. et al. Transcription factor Sp1 is important for retinoic acid-induced expression of the tissue plasminogen activator gene during F9 teratocarcinoma cell differentiation. Mol Cell Biol 1990; 10: 5883-93.
  • 67 Medcalf RL, Ruegg M, Schleuning WD. A DNA motif related to the cAMP-responsive element and an exon-located activator protein-2 binding site in the human tissue-type plasminogen activator gene promoter cooperate in basal expression and convey activation by phorbol ester and cAMP. J Biol Chem 1990; 265: 14618-26.
  • 68 Ohlsson M, Leonardsson G, Jia XC. et al. Transcriptional regulation of the rat tissue type plasminogen activator gene: localization of DNA elements and nuclear factors mediating constitutive and cyclic AMP-induced expression. Mol Cell Biol 1993; 13: 266-75.
  • 69 Arts J, Herr I, Lansink M. et al. Cell-type specific DNA-protein interactions at the tissue-type plasminogen activator promoter in human endothelial and HeLa cells in vivo and in vitro. Nucleic Acids Res 1997; 25: 311-7.
  • 70 Pecorino LT, Darrow AL, Strickland S. In vitro analysis of the tissue plasminogen activator promoter reveals a GC box-binding activity present in murine brain but undetectable in kidney and liver. Mol Cell Biol 1991; 11: 3139-47.
  • 71 Fujiwara J, Fujii M, Shimoda M. et al. Identification of the UV-responsive sequence in the human tissue plasminogen activator gene. Biosci Biotechnol Biochem 2000; 64: 1084-7.
  • 72 Pham NL, Franzen A, Levin EG. NF1 regulatory element functions as a repressor of tissue plasminogen activator expression. Arterioscler Thromb Vasc Biol 2004; 24: 982-7.
  • 73 Feng P, Ohlsson M, Ny T. The structure of the TATA-less rat tissue-type plasminogen activator gene. Species-specific sequence divergences in the promoter predict differences in regulation of gene expression. J Biol Chem 1990; 265: 2022-7.
  • 74 Holmberg M, Leonardsson G, Ny T. The speciesspecific differences in the cAMP regulation of the tissue- type plasminogen activator gene between rat, mouse and human is caused by a one-nucleotide substitution in the cAMP-responsive element of the promoters. Eur J Biochem 1995; 231: 466-74.
  • 75 Rossi P. et al. Follicle-stimulating hormone and cyclic AMP induce transcription from the human urokinase promoter in primary cultures of mouse Sertoli cells. Mol Endocrinol 1990; 4: 940-6.
  • 76 Costa M, Medcalf RL. Differential binding of cAMP-responsive-element (CRE)-binding protein-1 and activating transcription factor-2 to a CRE-like element in the human tissue-type plasminogen activator (t-PA) gene promoter correlates with opposite regulation of t-PA by phorbol ester in HT-1080 and HeLa cells. Eur J Biochem 1996; 237: 532-8.
  • 77 Rickles RJ, Darrow AL, Strickland S. Differentiation- responsive elements in the 5' region of the mouse tissue plasminogen activator gene confer two-stage regulation by retinoic acid and cyclic AMP in teratocarcinoma cells. Mol Cell Biol 1989; 9: 1691-704.
  • 78 Lamph WW. et al. Negative and positive regulation by transcription factor cAMP response elementbinding protein is modulated by phosphorylation. Proc Natl Acad Sci U S A 1990; 87: 4320-4.
  • 79 Eberhardt W, Engels C, Muller R. et al. Mechanisms of dexamethasone-mediated inhibition of cAMP-induced tPA expression in rat mesangial cells. Kidney Int 2002; 62: 809-21.
  • 80 Bulens F, Merchiers P, Ibanez-Tallon I. et al. Identification of a multihormone responsive enhancer far upstream from the human tissue-type plasminogen activator gene. J Biol Chem 1997; 272: 663-71.
  • 81 Belch JJ. et al. The effect of increasing fibrinolysis in patients with rheumatoid arthritis: a double blind study of stanozolol. Q J Med 1986; 58: 19-27.
  • 82 Medcalf RL. et al. Glucocorticoid-modulated gene expression of tissue- and urinary-type plasminogen activator and plasminogen activator inhibitor 1 and 2. J Cell Biol 1988; 106: 971-8.
  • 83 Jia XC, Ny T, Hsueh AJ. Synergistic effect of glucocorticoids and androgens on the hormonal induction of tissue plasminogen activator activity and messenger ribonucleic acid levels in granulosa cells. Mol Cell Endocrinol 1990; 68: 143-51.
  • 84 Kooistra T. et al. Stimulation of tissue-type plasminogen activator synthesis by retinoids in cultured human endothelial cells and rat tissues in vivo. Thromb Haemost 1991; 65: 565-72.
  • 85 Bulens F. et al. Stimulation by retinoids of tissuetype plasminogen activator secretion in cultured human endothelial cells: relations of structure to effect. J Cardiovasc Pharmacol 1992; 19: 508-14.
  • 86 Bulens F. et al. Retinoic acid induction of human tissue-type plasminogen activator gene expression via a direct repeat element (DR5) located at –7 kilobases. J Biol Chem 1995; 270: 7167-75.
  • 87 Merchiers P. et al. 1,25-Dihydroxyvitamin D(3) induction of the tissue-type plasminogen activator gene is mediated through its multihormone-responsive enhancer. FEBS Lett 1999; 460: 289-96.
  • 88 Merchiers P, Bulens F, De Vriese A. et al. Involvement of Sp1 in basal and retinoic acid induced transcription of the human tissue-type plasminogen activator gene. FEBS Lett 1999; 456: 149-54.
  • 89 Tiberio A, Farina AR, Tacconelli A. et al. Retinoic acid-enhanced invasion through reconstituted basement membrane by human SK-N-SH neuroblastoma cells involves membrane-associated tissue-type plasminogen activator. Int J Cancer 1997; 73: 740-8.
  • 90 Lansink M, Koolwijk P, van Hinsbergh V. et al. Effect of steroid hormones and retinoids on the formation of capillary-like tubular structures of human microvascular endothelial cells in fibrin matrices is related to urokinase expression. Blood 1998; 92: 927-38.
  • 91 Krystosek A, Seeds NW. Plasminogen activator release at the neuronal growth cone. Science 1981; 213: 1532-4.
  • 92 Theuring F, Aguzzi A, Kropp C. et al. Analysis of the human tissue-type plasminogen activator gene promoter activity during embryogenesis of transgenic mice and rats. Fibrinolysis 1995; 9: 277-87.
  • 93 Yu H, Schleuning WD, Michl M. et al. Control elements between –9.5 and –3.0 kb in the human tissuetype plasminogen activator gene promoter direct spatial and inducible expression to the murine brain. Eur J Neurosci 2001; 14: 799-808.
  • 94 Madani R. et al. Enhanced hippocampal longterm potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. Embo J 1999; 18: 3007-12.
  • 95 de Kloet ER, Oitzl MS, Joels M. Stress and cognition: are corticosteroids good or bad guys?. Trends Neurosci 1999; 22: 422-6.
  • 96 Pawlak R. et al. Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat Neurosci 2003; 6: 168-74.
  • 97 Wiman B. Plasminogen activator inhibitor 1 (PAI-1) in plasma: its role in thrombotic disease. Thromb Haemost 1995; 74: 71-6.
  • 98 Brooks RV. Detection of cortisol administration in the horse. Equine Vet J 1999; 31: 266-7.
  • 99 Nykjaer A, Petersen CM, Christensen I E. et al. Urokinase receptors in human monocytes. Biochim Biophys Acta 1990; 1052: 399-407.
  • 100 Pepper MS, Sappino AP, Stocklin R. et al. Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol 1993; 122: 673-84.
  • 101 Nykjaer A, Moller B, Todd , 3rd RF. et al. Urokinase receptor. An activation antigen in human T lymphocytes. J Immunol 1994; 152: 505-16.
  • 102 Gyetko MR, Sitrin RG, Fuller JA. et al. Function of the urokinase receptor (CD87) in neutrophil chemotaxis. J Leukoc Biol 1995; 58: 533-8.
  • 103 Limongi P. et al. Biosynthesis and apical localization of the urokinase receptor in polarized MDCK epithelial cells. FEBS Lett 1995; 369: 207-11.
  • 104 Boyd D. et al. Determination of the levels of urokinase and its receptor in human colon carcinoma cell lines. Cancer Res 1988; 48: 3112-6.
  • 105 Mohanam S, Sawaya R, McCutcheon I. et al. Modulation of in vitro invasion of human glioblastoma cells by urokinase-type plasminogen activator receptor antibody. Cancer Res 1993; 53: 4143-7.
  • 106 Nielsen BS, Sehested M, Duun S. et al. Urokinase plasminogen activator is localized in stromal cells in ductal breast cancer. Lab Invest 2001; 81: 1485-501.
  • 107 Soravia E, Grebe A, De Luca P. et al. A conserved TATA-less proximal promoter drives basal transcription from the urokinase-type plasminogen activator receptor gene. Blood 1995; 86: 624-35.
  • 108 Allgayer H, Wang H, Wang Y. et al. Transactivation of the urokinase-type plasminogen activator receptor gene through a novel promoter motif bound with an activator protein- 2alpha-related factor. J Biol Chem 1999; 274: 4702-14.
  • 109 Schewe DM. et al. Tumor-specific transcription factor binding to an activator protein-2/Sp1 element of the urokinase-type plasminogen activator receptor pro- moter in a first large series of resected gastrointestinal cancers. Clin Cancer Res 2003; 9: 2267-76.
  • 110 Dang J. et al. A region between –141 and –61 bp containing a proximal AP-1 is essential for constitutive expression of urokinase-type plasminogen activator receptor. Eur J Biochem 1999; 264: 92-9.
  • 111 Lengyel E, Wang H, Stepp E. et al. Requirement of an upstream AP-1 motif for the constitutive and phorbol ester-inducible expression of the urokinasetype plasminogen activator receptor gene. J Biol Chem 1996; 271: 23176-84.
  • 112 Lengyel E, Wang H, Gum R. et al. Elevated urokinase- type plasminogen activator receptor expression in a colon cancer cell line is due to a constitutively activated extracellular signal-regulated kinase-1-dependent signaling cascade. Oncogene 1997; 14: 2563-73.
  • 113 Gum R. et al. Stimulation of urokinase-type plasminogen activator receptor expression by PMA requires JNK1-dependent and -independent signaling modules. Oncogene 1998; 17: 213-25.
  • 114 Marschall C. et al. UVB increases urokinase-type plasminogen activator receptor (uPAR) expression. J Invest Dermatol 1999; 113: 69-76.
  • 115 Wang H, Yang L, Jamaluddin MS, Boyd DD. The Kruppel-like KLF4 transcription factor, a novel regulator of urokinase receptor expression, drives synthesis of this binding site in colonic crypt luminal surface epithelial cells. J Biol Chem 2004; 279: 22674-83.
  • 116 Trisciuoglio D, Iervolino A, Candiloro A. et al. bcl-2 induction of urokinase plasminogen activator receptor expression in human cancer cells through Sp1 activation: involvement of ERK1/ERK2 activity. J Biol Chem 2004; 279: 6737-45.
  • 117 Park IK, Lyu MA, Yeo SJ. et al. Sp1 mediates constitutive and transforming growth factor beta-inducible expression of urokinase type plasminogen activator receptor gene in human monocyte-like U937 cells. Biochim Biophys Acta 2000; 1490: 302-10.
  • 118 Hapke S, Gawaz M, Dehne K. et al. beta(3)A-integrin downregulates the urokinase-type plasminogen activator receptor (u-PAR) through a PEA3/ets transcriptional silencing element in the u-PAR promoter. Mol Cell Biol 2001; 21: 2118-32.
  • 119 Chapman HA, Wei Y. Protease crosstalk with integrins: the urokinase receptor paradigm. Thromb Haemost 2001; 86: 124-9.
  • 120 Xue W, Mizukami I, Todd , 3rd RF, Petty HR. Urokinase-type plasminogen activator receptors associate with beta1 and beta3 integrins of fibrosarcoma cells: dependence on extracellular matrix components. Cancer Res 1997; 57: 1682-9.
  • 121 Besta F, Massberg S, Brand K. et al. Role of beta(3)-endonexin in the regulation of NF-kappaB-dependent expression of urokinase-type plasminogen activator receptor. J Cell Sci 2002; 115: 3879-88.
  • 122 Wang H, Hicks J, Khanbolooki P. et al. Transgenic mice demonstrate novel promoter regions for tissuespecific expression of the urokinase receptor gene. Am J Pathol 2003; 163: 453-64.
  • 123 Seifert SC, Gelehrter TD. Mechanism of dexamethasone inhibition of plasminogen activator in rat hepatoma cells. Proc Natl Acad Sci U S A 1978; 75: 6130-3.
  • 124 Westerhausen , Jr. DR, Hopkins WE, Billadello JJ. Multiple transforming growth factor-beta-inducible elements regulate expression of the plasminogen activator inhibitor type-1 gene in Hep G2 cells. J Biol Chem 1991; 266: 1092-100.
  • 125 King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 1998; 21: 1414-31.
  • 126 Samad F, Yamamoto K, Loskutoff DJ. Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-alpha and lipopolysaccharide. J Clin Invest 1996; 97: 37-46.
  • 127 Mavri A. et al. Subcutaneous abdominal, but not femoral fat expression of plasminogen activator inhibitor- 1 (PAI-1) is related to plasma PAI-1 levels and insulin resistance and decreases after weight loss. Diabetologia 2001; 44: 2025-31.
  • 128 Skurk T, Hauner H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord 2004; 28: 1357-64.
  • 129 Riccio A. et al. Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor- nuclear factor I in the type 1 plasminogen activator inhibitor gene. Mol Cell Biol 1992; 12: 1846-55.
  • 130 Dennler S. et al. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitortype 1 gene. Embo J 1998; 17: 3091-100.
  • 131 Song CZ, Siok TE, Gelehrter TD. Smad4/DPC4 and Smad3 mediate transforming growth factor-beta (TGF-beta) signaling through direct binding to a novel TGF-beta-responsive element in the human plasminogen activator inhibitor-1 promoter. J Biol Chem 1998; 273: 29287-90.
  • 132 Hua X, Liu X, Ansari DO, Lodish HF. Synergistic cooperation of TFE3 and smad proteins in TGF-betainduced transcription of the plasminogen activator inhibitor- 1 gene. Genes Dev 1998; 12: 3084-95.
  • 133 Feng XH. et al. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev 1998; 12: 2153-63.
  • 134 Datta PK, Blake MC, Moses HL. Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-beta -induced physical and functional interactions between smads and Sp1. J Biol Chem 2000; 275: 40014-9.
  • 135 Du XL. et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor- 1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A 2000; 97: 12222-6.
  • 136 Goldberg HJ, Scholey J, Fantus IG. Glucosamine activates the plasminogen activator inhibitor 1 gene promoter through Sp1 DNA binding sites in glomerular mesangial cells. Diabetes 2000; 49: 863-71.
  • 137 Chen Y, Billadello JJ, Schneider DJ. Identification and localization of a fatty acid response region in the human plasminogen activator inhibitor-1 gene. Arterioscler Thromb Vasc Biol 2000; 20: 2696-701.
  • 138 Motojima M, Ando T, Yoshioka T. Sp1-like activity mediates angiotensin-II-induced plasminogen-activator inhibitor type-1 (PAI-1) gene expression in mesangial cells. Biochem J 2000; 349: 435-41.
  • 139 Kietzmann T, Roth U, Jungermann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood 1999; 94: 4177-85.
  • 140 Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001; 93: 266-76.
  • 141 Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. Faseb J 2002; 16: 1151-62.
  • 142 Gertler JP, Perry L, L'Italien G. et al. Ambient oxygen tension modulates endothelial fibrinolysis. J Vasc Surg 1993; 18: 939-45. discussion 45–6.
  • 143 Samoylenko A. et al. The upstream stimulatory factor-2a inhibits plasminogen activator inhibitor-1 gene expression by binding to a promoter element adjacent to the hypoxia-inducible factor-1 binding site. Blood 2001; 97: 2657-66.
  • 144 Fink T, Kazlauskas A, Poellinger L. et al. Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1. Blood 2002; 99: 2077-83.
  • 145 Zhang Q, Wu Y, Ann DK. et al. Mechanisms of hypoxic regulation of plasminogen activator inhibitor-1 gene expression in keloid fibroblasts. J Invest Dermatol 2003; 121: 1005-12.
  • 146 Zhang Q, Wu Y, Chau CH. et al. Crosstalk of hypoxia- mediated signaling pathways in upregulating plasminogen activator inhibitor-1 expression in keloid fibroblasts. J Cell Physiol 2004; 199: 89-97.
  • 147 Kietzmann T, Jungermann K, Gorlach A. Regulation of the hypoxia-dependent plasminogen activator inhibitor 1 expression by MAP kinases. Thromb Haemost 2003; 89: 666-73.
  • 148 Samad F, Schneiderman J, Loskutoff D. Expression of fibrinolytic genes in tissues from human atherosclerotic aneurysms and from obese mice. Ann N Y Acad Sci 1997; 811: 350-8. discussion 8–60.
  • 149 Samad F, Uysal KT, Wiesbrock SM. et al. Tumor necrosis factor alpha is a key component in the obesitylinked elevation of plasminogen activator inhibitor 1. Proc Natl Acad Sci U S A 1999; 96: 6902-7.
  • 150 Samad F, Yamamoto K, Pandey M. et al. Elevated expression of transforming growth factor-beta in adipose tissue from obese mice. Mol Med 1997; 3: 37-48.
  • 151 Chen YQ, Sloan-Lancaster J, Berg DT. et al. Differential mechanisms of plasminogen activator inhibitor- 1 gene activation by transforming growth factor- beta and tumor necrosis factor-alpha in endothelial cells. Thromb Haemost 2001; 86: 1563-72.
  • 152 Gruber F, Hufnagl P, Hofer-Warbinek R. et al. Direct binding of Nur77/NAK-1 to the plasminogen activator inhibitor 1 (PAI-1) promoter regulates TNF alpha -induced PAI-1 expression. Blood 2003; 101: 3042-8.
  • 153 Hou B, Eren M, Painter CA. et al. Tumor necrosis factor alpha activates the human plasminogen activator inhibitor-1 gene through a distal nuclear factor kappaB site. J Biol Chem 2004; 279: 18127-36.
  • 154 White MF, Kahn CR. The insulin signaling system. J Biol Chem 1994; 269: 1-4.
  • 155 Samad F, Loskutoff DJ. The fat mouse: a powerful genetic model to study elevated plasminogen activator inhibitor 1 in obesity/NIDDM. Thromb Haemost 1997; 78: 652-5.
  • 156 Morange PE. et al. Glucocorticoids and insulin promote plasminogen activator inhibitor 1 production by human adipose tissue. Diabetes 1999; 48: 890-5.
  • 157 Cigolini M. et al. Expression of plasminogen activator inhibitor-1 in human adipose tissue: a role for TNF-alpha?. Atherosclerosis 1999; 143: 81-90.
  • 158 Alessi MC. et al. Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 2000; 49: 1374-80.
  • 159 Samad F, Pandey M, Bell PA. et al. Insulin continues to induce plasminogen activator inhibitor 1 gene expression in insulin-resistant mice and adipocytes. Mol Med 2000; 6: 680-92.
  • 160 Virkamaki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 1999; 103: 931-43.
  • 161 Griffiths MR. et al. Insulin-stimulated expression of c-fos, fra1 and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex. Biochem J 1998; 335 (Pt 1) 19-26
  • 162 Cusi K, Maezono K, Osman A. et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105: 311-20.
  • 163 Krook A. et al. Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes 2000; 49: 284-92.
  • 164 Shao J, Yamashita H, Qiao L. et al. Decreased Akt kinase activity and insulin resistance in C57BL/KsJLeprdb/ db mice. J Endocrinol 2000; 167: 107-15.
  • 165 Olefsky JM, Nolan JJ. Insulin resistance and noninsulin- dependent diabetes mellitus: cellular and molecular mechanisms. Am J Clin Nutr 1995; 61: 980S-6S
  • 166 Koziczak M. et al. E2F1-mediated transcriptional inhibition of the plasminogen activator inhibitor type 1 gene. Eur J Biochem 2001; 268: 4969-78.
  • 167 Brennan P, Babbage JW, Thomas G. et al. p70(s6k) integrates phosphatidylinositol 3-kinase and rapamycin-regulated signals for E2F regulation in T lymphocytes. Mol Cell Biol 1999; 19: 4729-38.
  • 168 Venugopal J, Hanashiro K, Yang ZZ. et al. Identification and modulation of a caveolae-dependent signal pathway that regulates plasminogen activator inhibitor- 1 in insulin-resistant adipocytes. Proc Natl Acad Sci U S A 2004; 101: 17120-5.
  • 169 Schäfer K. et al. Disruption of the plasminogen activator inhibitor 1 gene reduces the adiposity and improves the metabolic profile of genetically obese and diabetic ob/ob mice. Faseb J 2001; 15: 1840-2.
  • 170 Ma LJ. et al. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 2004; 53: 336-46.
  • 171 Lopez-Alemany R. et al. Plasminogen activator inhibitor type-1 inhibits insulin signaling by competing with alphavbeta3 integrin for vitronectin binding. Eur J Biochem 2003; 270: 814-21.
  • 172 Kruithof EK, Baker MS, Bunn CL. Biological and clinical aspects of plasminogen activator inhibitor type 2. Blood 1995; 86: 4007-24.
  • 173 Cousin E. et al. Regulatory elements involved in constitutive and phorbol ester- inducible expression of the plasminogen activator inhibitor type 2 gene promoter. Nucleic Acids Res 1991; 19: 3881-6.
  • 174 Dear AE, Costa M, Medcalf RL. Urokinase-mediated transactivation of the plasminogen activator inhibitor type 2 (PAI-2) gene promoter in HT-1080 cells utilises AP-1 binding sites and potentiates phorbol ester-mediated induction of endogenous PAI-2 mRNA. FEBS Lett 1997; 402: 265-72.
  • 175 Dear AE. et al. Molecular mechanisms governing tumor-necrosis-factor-mediated regulation of plasminogen- activator inhibitor type-2 gene expression. Eur J Biochem 1996; 241: 93-100.
  • 176 Antalis TM, Costelloe E, Muddiman J. et al. Regulation of the plasminogen activator inhibitor type-2 gene in monocytes: localization of an upstream transcriptional silencer. Blood 1996; 88: 3686-97.
  • 177 Ogbourne SM, Antalis TM. Characterisation of PAUSE-1, a powerful silencer in the human plasminogen activator inhibitor type 2 gene promoter. Nucleic Acids Res 2001; 29: 3919-27.
  • 178 Altus MS, Nagamine Y. Protein synthesis inhibition stabilizes urokinase-type plasminogen activator mRNA. Studies in vivo and in cell-free decay reactions. J Biol Chem 1991; 266: 21190-6.
  • 179 Ziegler A, Hagmann J, Kiefer B, Nagamine Y. Ca2+ potentiates cAMP-dependent expression of urokinase-type plasminogen activator gene through a calmodulin- and protein kinase C- independent mechanism. J Biol Chem 1990; 265: 21194-201.
  • 180 Chen J, Baskerville C, Han Q. et al. Alpha(v) integrin, p38 mitogen-activated protein kinase, and urokinase plasminogen activator are functionally linked in invasive breast cancer cells. J Biol Chem 2001; 276: 47901-5.
  • 181 Ziegler A. et al. Protein kinase C down-regulation enhances cAMP-mediated induction of urokinase-type plasminogen activator mRNA in LLC-PK1 cells. J Biol Chem 1991; 266: 21067-74.
  • 182 Henderson BR, Kefford RF. Dexamethasone decreases urokinase plasminogen activator mRNA stability in MAT 13762 rat mammary carcinoma cells. Br J Cancer 1993; 67: 99-101.
  • 183 Shetty S. Cytoplasmic-nuclear shuttling of the urokinase mRNA binding protein regulates message stability. Mol Cell Biochem 2002; 237: 55-67.
  • 184 Shimba S, Hayashi M, Sone H. et al. 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) induces binding of a 50 kDa protein on the 3' untranslated region of urokinase- type plasminogen activator mRNA. Biochem Biophys Res Commun 2000; 272: 441-8.
  • 185 Shaw G, Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986; 46: 659-67.
  • 186 Caput D. et al. Identification of a common nucleotide sequence in the 3'-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U.S.A. 1986; 83: 1670-4.
  • 187 Lagnado CA, Brown CY, Goodall GJ. AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA( U/A)(U/A). Mol Cell Biol 1994; 14: 7984-95.
  • 188 Zubiaga A. et al. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 1995; 15: 2219-30.
  • 189 Chen CY, Shyu AB. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 1995; 20: 465-70.
  • 190 Nanbu R, Menoud P-A, Nagamine Y. Multiple instability- regulating sites in the 3' untranslated region of the urokinase-type plasminogen activator mRNA. Mol Cell Biol 1994; 14: 4920-8.
  • 191 Henderson BR, Tansey WP, Phillips SM. et al. Transcriptional and posttranscriptional activation of urokinase plasminogen activator gene expression in metastatic tumor cells. Cancer Res 1992; 52: 2489-96.
  • 192 Nanbu R. et al. Enhanced stability of urokinasetype plasminogen activator mRNA in metastatic breast cancer MDA-MB-231 cells and LLC-PK1 cells downregulated for protein kinase C--correlation with cytoplasmic heterogeneous nuclear ribonucleoprotein C. Eur J Biochem 1997; 247: 169-74.
  • 193 Huang S, New L, Pan Z. et al. Urokinase plasminogen activator/urokinase-specific surface receptor expression and matrix invasion by breast cancer cells requires constitutive p38alpha mitogen-activated protein kinase activity. J Biol Chem 2000; 275: 12266-72.
  • 194 Tran H, Maurer F, Nagamine Y. Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol Cell Biol 2003; 23: 7177-88.
  • 195 Montero L, Nagamine Y. Regulation by p38 mitogen- activated protein kinase of ofadenylate- and uridylate-rich element-mediated urokinase-type plasminogen activator (uPA) messenger RNA stability and uPA-dependent in vitro cell invasion. Cancer Res 1999; 59: 5286-93.
  • 196 Han Q. et al. Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem 2002; 277: 48379-85.
  • 197 Tran H. et al. Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol Cell 2004; 13: 101-11.
  • 198 Silverman E, Edwalds-Gilbert G, Lin RJ. DExD/ H-box proteins and their partners: helping RNA helicases unwind. Gene 2003; 312: 1-16.
  • 199 Rocak S, Linder P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 2004; 5: 232-41.
  • 200 Ouyang Y, Huang P, Huang C. Influence of 5'-untranslated region (UTR) sequence on the regulation of human tissue plasminogen activator (t-PA) mRNA expression. 1995; 40: 1378-83.
  • 201 Henderson BR, Sleigh MJ. TATA box-independent transcription of the human tissue plasminogen activator gene initiates within a sequence conserved in related genes. FEBS Lett 1992; 309: 130-4.
  • 202 Costa M, Shen Y, Maurer F, Medcalf RL. Transcriptional regulation of the tissue-type plasminogenactivator gene in human endothelial cells: identification of nuclear factors that recognise functional elements in the tissue-type plasminogen-activator gene promoter. Eur J Biochem 1998; 258: 123-31.
  • 203 Tebo JM, Datta S, Kishore R. et al. Interleukin- 1-mediated stabilization of mouse KC mRNA depends on sequences in both 5'- and 3'-untranslated regions. J Biol Chem 2000; 275: 12987-93.
  • 204 Ouyang Y, Huang P, Huang C. Inhibitory effect of 3'-untranslated region (3'-UTR) of human tissue-plasminogen activator (ht-PA) mRNA on its expression. Sci China B 1995; 38: 1253-60.
  • 205 Huarte J, Belin D, Vassalli JD. Plasminogen activator in mouse and rat oocytes: induction during meiotic maturation. Cell 1985; 43: 551-8.
  • 206 Huarte J, Belin D, Vassalli A. et al. Meiotic maturation of mouse oocytes triggers the translation and polyadenylation of dormant tissue-type plasminogen activator mRNA. Genes Dev 1987; 1: 1201-11.
  • 207 Huarte J, Stutz A, O'Connell ML. et al. Transient translational silencing by reversible mRNA deadenylation. Cell 1992; 69: 1021-30.
  • 208 Vassalli JD. et al. Regulated polyadenylation controls mRNA translation during meiotic maturation of mouse oocytes. Genes Dev 1989; 3: 2163-71.
  • 209 Stutz A, Huarte J, Gubler P. et al. In vivo antisense oligodeoxynucleotide mapping reveals masked regulatory elements in an mRNA dormant in mouse oocytes. Mol Cell Biol 1997; 17: 1759-67.
  • 210 Stutz A, Conne B, Huarte J. et al. Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev 1998; 12: 2535-48.
  • 211 Dubois-Dauphin M, Eder-Colli L, Vallet P. et al. Induction of enhanced green fluorescent protein expression in response to lesions in the nervous system. J Comp Neurol 2004; 474: 108-22.
  • 212 Lund LR, Ellis V, Ronne E. et al. Transcriptional and post-transcriptional regulation of the receptor for urokinase-type plasminogen activator by cytokines and tumour promoters in the human lung carcinoma cell line A549. Biochem J 1995; 310: 345-52.
  • 213 Shetty S. et al. Posttranscriptional regulation of urokinase receptor mRNA: identification of a novel urokinase receptor mRNA binding protein in human mesothelioma cells. Mol Cell Biol 1997; 17: 1075-83.
  • 214 Shetty S, Idell S. Urokinase receptor mRNA stability involves tyrosine phosphorylation in lung epithelial cells. Am J Respir Cell Mol Biol 2004; 30: 69-75.
  • 215 Shetty S. et al. Regulation of urokinase receptor expression by phosphoglycerate kinase. Am J Respir Cell Mol Biol 2004; 31: 100-6.
  • 216 Wang GJ. et al. Posttranscriptional regulation of urokinase plasminogen activator receptor messenger RNA levels by leukocyte integrin engagement. Proc Natl Acad Sci U S A 1998; 95: 6296-301.
  • 217 Montuori N, Mattiello A, Mancini A. et al. Urokinase- type plasminogen activator up-regulates the expression of its cellular receptor through a post-transcriptional mechanism. FEBS Lett 2001; 508: 379-84.
  • 218 Montuori N, Mattiello A, Mancini A. et al. Urokinase- mediated posttranscriptional regulation of urokinase- receptor expression in non small cell lung carcinoma. Int J Cancer 2003; 105: 353-60.
  • 219 Ginsburg D, Zeheb R, Yang AY. et al. cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J Clin Invest 1986; 78: 1673-80.
  • 220 Bosma PJ, Kooistra T. Different induction of two plasminogen activator inhibitor 1 mRNA species by phorbol ester in human hepatoma cells. J Biol Chem 1991; 266: 17845-9.
  • 221 Ny T, Sawdey M, Lawrence D. et al. Cloning and sequence of a cDNA coding for the human betamigrating endothelial-cell-type plasminogen activator inhibitor. Proc Natl Acad Sci U S A 1986; 83: 6776-80.
  • 222 Fattal PG, Billadello JJ. Species-specific differential cleavage and polyadenylation of plasminogen activator inhibitor type 1 hnRNA. Nucleic Acids Res 1993; 21: 1463-6.
  • 223 Loskutoff DJ, Linders M, Keijer J. et al. Structure of the human plasminogen activator inhibitor 1 gene: nonrandom distribution of introns. Biochemistry 1987; 26: 3763-8.
  • 224 Fattal PG, Schneider DJ, Sobel BE, Billadello JJ. Post-transcriptional regulation of expression of plasminogen activator inhibitor type 1 mRNA by insulin and insulin-like growth factor 1. J Biol Chem 1992; 267: 12412-5.
  • 225 Heaton JH, Kathju S, Gelehrter TD. Transcriptional and posttranscriptional regulation of type 1 plasminogen activator inhibitor and tissue-type plasminogen activator gene expression in HTC rat hepatoma cells by glucocorticoids and cyclic nucleotides. Mol Endocrinol 1992; 6: 53-60.
  • 226 Heaton JH, Tillmann-Bogush M, Leff NS, Gelehrter TD. Cyclic nucleotide regulation of type-1 plasminogen activator-inhibitor mRNA stability in rat hepatoma cells. Identification of cis-acting sequences. J Biol Chem 1998; 273: 14261-8.
  • 227 Tillmann-Bogush M, Heaton JH, Gelehrter TD. Cyclic nucleotide regulation of PAI-1 mRNA stability. Identification of cytosolic proteins that interact with an a-rich sequence. J Biol Chem 1999; 274: 1172-9.
  • 228 Heaton JH, Dlakic WM, Dlakic M. et al. Identification and cDNA cloning of a novel RNA-binding protein that interacts with the cyclic nucleotide-responsive sequence in the Type-1 plasminogen activator inhibitor mRNA. J Biol Chem 2001; 276: 3341-7.
  • 229 Yeh LC, Mikhailov V, Lee JC. Regulation of expression of plasminogen activator inhibitor-1 in cultured rat osteoblastic cells by osteogenic protein-1 (BMP-7). J Cell Biochem 2001; 81: 46-54.
  • 230 Schneiderman J, Sawdey MS, Keeton MR. et al. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci U S A 1992; 89: 6998-7002.
  • 231 Takeda K, Ichiki T, Tokunou T. et al. Critical role of Rho-kinase and MEK/ERK pathways for angiotensin II-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler Thromb Vasc Biol 2001; 21: 868-73.
  • 232 Shi RJ, Simpson-Haidaris PJ, Marder VJ. et al. Post-transcriptional regulation of endothelial cell plasminogen activator inhibitor-1 expression during R. rickettsii infection. Microb Pathog 2000; 28: 127-33.
  • 233 Medcalf RL, Kruithof EK, Schleuning WD. Plasminogen activator inhibitor 1 and 2 are tumor necrosis factor/cachectin-responsive genes. J Exp Med 1988; 168: 751-9.
  • 234 Bystrom J, Wynn TA, Domachowske JB. et al. Gene microarray analysis reveals interleukin-5-dependent transcriptional targets in mouse bone marrow. Blood 2004; 103: 868-77.
  • 235 Medcalf RL. Cell- and gene-specific interactions between signal transduction pathways revealed by okadaic acid. J Biol Chem 1992; 267: 12220-6.
  • 236 Schleuning WD, Medcalf RL, Hession C. et al. Plasminogen activator inhibitor 2: regulation of gene transcription during phorbol ester-mediated differentiation of U-937 human histiocytic lymphoma cells. Mol Cell Biol 1987; 7: 4564-7.
  • 237 Maurer F, Medcalf RL. Plasminogen activator inhibitor type 2 gene induction by tumor necrosis factor and phorbol ester involves transcriptional and posttranscriptional events. Identification of a functional nonameric AU- rich motif in the 3'-untranslated region. J Biol Chem 1996; 271: 26074-80.
  • 238 Maurer F, Tierney M, Medcalf RL. An AU-rich sequence in the 3'-UTR of plasminogen activator inhibitor type 2 (PAI-2) mRNA promotes PAI-2 mRNA decay and provides a binding site for nuclear HuR. Nucleic Acids Res 1999; 27: 1664-73.
  • 239 Yu H, Stasinopoulos S, Leedman P. et al. Inherent instability of plasminogen activator inhibitor type 2 mRNA is regulated by tristetraprolin. J Biol Chem 2003; 278: 13912-8.
  • 240 Dean JL, Wait R, Mahtani KR. et al. The 3' untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol Cell Biol 2001; 21: 721-30.
  • 241 Levy NS, Chung S, Furneaux H. et al. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 1998; 273: 6417-23.
  • 242 Peng SS, Chen CY, Xu N. et al. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. Embo J 1998; 17: 3461-70.
  • 243 Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 1998; 281: 1001-5.
  • 244 Taylor GA, Carballo E, Lee DM. et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 1996; 4: 445-54.
  • 245 Stoecklin G, Ming XF, Looser R. et al. Somatic mRNA turnover mutants implicate tristetraprolin in the interleukin-3 mRNA degradation pathway. Mol Cell Biol 2000; 20: 3753-63.
  • 246 Tierney MJ, Medcalf RL. Plasminogen activator inhibitor type 2 contains mRNA instability elements within exon 4 of the coding region. Sequence homology to coding region instability determinants in other mRNAs. J Biol Chem 2001; 276: 13675-84.
  • 247 John B, Enright AJ, Aravin A. et al. Human MicroRNA targets. PLoS Biol 2004; 2: e363
  • 248 Providence KM, Higgins PJ. PAI-1 expression is required for epithelial cell migration in two distinct phases of in vitro wound repair. J Cell Physiol 2004; 200: 297-308.
  • 249 Vulin I A, Stanley FM. Oxidative stress activates the plasminogen activator inhibitor type 1 (PAI-1) promoter through an AP-1 response element and cooperates with insulin for additive effects on PAI-1 transcription. J Biol Chem 2004; 279: 25172-8.
  • 250 Liu Q, Moller U, Flugel D, Kietzmann T. Induction of plasminogen activator inhibitor I gene expression by intracellular calcium via hypoxia-inducible factor-1. Blood 2004; 104: 3993-4001.
  • 251 Parra M, Jardi M, Koziczak M. et al. p53 Phosphorylation at serine 15 is required for transcriptional induction of the plasminogen activator inhibitor-1 (PAI-1) gene by the alkylating agent N-methyl- N'-nitro-N-nitrosoguanidine. J Biol Chem 2001; 276: 36303-10.
  • 252 Descheemaeker KA, Wyns S, Nelles L. et al. Interaction of AP-1-, AP-2-, and Sp1-like proteins with two distinct sites in the upstream regulatory region of the plasminogen activator inhibitor-1 gene mediates the phorbol 12-myristate 13-acetate response. J Biol Chem 1992; 267: 15086-91.
  • 253 Arts J, Grimbergen J, Bosma PJ. et al. Role of c-Jun and proximal phorbol 12-myristate-13-acetate- (PMA)-responsive elements in the regulation of basal and PMA-stimulated plasminogen-activator inhibitor- 1 gene expression in HepG2. Eur J Biochem 1996; 241: 393-402.
  • 254 Healy AM, Gelehrter TD. Induction of plasminogen activator inhibitor-1 in HepG2 human hepatoma cells by mediators of the acute phase response. J Biol Chem 1994; 269: 19095-100.
  • 255 Kasza A, Kiss DL, Gopalan S. et al. Mechanism of plasminogen activator inhibitor-1 regulation by oncostatin M and interleukin-1 in human astrocytes. J Neurochem 2002; 83: 696-703.
  • 256 Goldberg HJ, Whiteside I C, Fantus IG. The hexosamine pathway regulates the plasminogen activator inhibitor-1 gene promoter and Sp1 transcriptional activation through protein kinase C-beta I and -delta. J Biol Chem 2002; 277: 33833-41.
  • 257 Bruzdzinski CJ, Johnson MR, Goble CA. et al. Mechanism of glucocorticoid induction of the rat plasminogen activator inhibitor-1 gene in HTC rat hepatoma cells: identification of cis- acting regulatory elements. Mol Endocrinol 1993; 7: 1169-77.
  • 258 Ma Y, Ryu JS, Dulay A. et al. Regulation of plasminogen activator inhibitor (PAI)-1 expression in a human trophoblast cell line by glucocorticoid (GC) and transforming growth factor (TGF)-beta. Placenta 2002; 23: 727-34.
  • 259 Watanabe A, Kanai H, Arai M. et al. Retinoids induce the PAI-1 gene expression through tyrosine kinase- dependent pathways in vascular smooth muscle cells. J Cardiovasc Pharmacol 2002; 39: 503-12.
  • 260 Heaton JH, Dame MK, Gelehrter TD. Thrombin induction of plasminogen activator inhibitor mRNA in human umbilical vein endothelial cells in culture. J Lab Clin Med 1992; 120: 222-8.
  • 261 Pontrelli P, Ranieri E, Ursi M. et al. jun-N-terminal kinase regulates thrombin-induced PAI-1 gene expression in proximal tubular epithelial cells. Kidney Int 2004; 65: 2249-61.
  • 262 Chen HC, Feener EP. MEK1,2 response element mediates angiotensin II-stimulated plasminogen activator inhibitor-1 promoter activation. Blood 2004; 103: 2636-44.
  • 263 Olman MA, Hagood JS, Simmons WL. et al. Fibrin fragment induction of plasminogen activator inhibitor transcription is mediated by activator protein-1 through a highly conserved element. Blood 1999; 94: 2029-38.
  • 264 Schoenhard JA, Smith LH, Painter CA. et al. Regulation of the PAI-1 promoter by circadian clock components: differential activation by BMAL1 and BMAL2. J Mol Cell Cardiol 2003; 35: 473-81.
  • 265 Maemura K, de la Monte SM, Chin MT. et al. CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem 2000; 275: 36847-51.
  • 266 Samarakoon R, Higgins PJ. MEK/ERK pathway mediates cell-shape-dependent plasminogen activator inhibitor type 1 gene expression upon drug-induced disruption of the microfilament and microtubule networks. J Cell Sci 2002; 115: 3093-103.
  • 267 Grenett HE, Wolkowicz PE, Benza RL. et al. Identification of a 251-bp fragment of the PAI-1 gene promoter that mediates the ethanol-induced suppression of PAI-1 expression. Alcohol Clin Exp Res 2001; 25: 629-36.