RSS-Feed abonnieren
DOI: 10.1055/a-0858-2290
Longitudinal Course of Short-Term Variation and Doppler Parameters in Early Onset Growth Restricted Fetuses
Longitudinaler Verlauf von Kurzzeitvariation und Doppler-Parametern bei Feten mit früh einsetzender WachstumsrestriktionPublikationsverlauf
01. Dezember 2017
06. Februar 2019
Publikationsdatum:
25. Juni 2019 (online)
Abstract
Purpose To evaluate the longitudinal pattern of fetal heart rate short term variation (STV) and Doppler indices and their correlation to each other in severe growth restricted (IUGR) fetuses.
Materials and Methods In this retrospective study, pregnancies with a birth weight below the 10th percentile, born between 24 and 34 gestational weeks with serial Doppler measurements in combination with a computerized CTG (cCTG) with calculated STV were included. Longitudinal changes of both Doppler indices and STV values were evaluated with generalized additive models, adjusted for gestational age and the individual. For all measurements the frequency of abnormal values with regard to the time interval before delivery and Pearson correlations between Doppler indices and STV values were calculated.
Results 41 fetuses with a total of 1413 observations were included. Over the course of the whole study period, regression analyses showed no significant change of STV values (p = 0.38). Only on the day of delivery, a prominent decrease was observed (mean STV d28-22: 7.97 vs. mean STV on day 0: 6.8). Doppler indices of UA and MCA showed a continuous, significant deterioration starting about three weeks prior to delivery (p = 0.007; UA and p < 0.001, MCA). Correlation between any Doppler index and STV values was poor.
Conclusion Fetal heart rate STV does not deteriorate continuously. Therefore, cCTG monitoring should be performed at least daily in these high-risk fetuses. Doppler indices of umbilical artery (UA) and middle cerebral artery (MCA), however, showed continuous deterioration starting about 3 weeks prior to delivery.
Zusammenfassung
Ziel Analyse des longitudinalen Verlaufs der Kurzzeitvariation der fetalen Herzfrequenz (STV) und der Dopplerindizes und deren Korrelation zueinander bei Feten mit früh einsetzender Wachstumsrestriktion (IUGR).
Material und Methoden In diese retrospektive Studie wurden Einlings-Schwangerschaften eingeschlossen, welche ein Geburtsgewicht unterhalb der 10. Perzentile aufwiesen und zwischen 24 + 0 und 34 + 0 SSW entbunden wurden. Bei den eingeschlossenen Schwangerschaften fanden serielle Untersuchungen der Dopplerparameter, kombiniert mit der Erhebung der STV durch computerisierte CTGs (cCTG), statt. Die Analyse des longitudinalen Verlaufs der Dopplerparameter und der STV wurde mittels eines generalisierten additiven Modells durchgeführt. Für alle Messungen wurde die Häufigkeit pathologischer Untersuchungsbefunde im Hinblick auf das Zeitintervall zwischen Messung und Geburtszeitpunkt bestimmt. Zusätzlich wurden Pearson-Korrelationen zwischen Dopplerindizes und der STV berechnet.
Ergebnisse 41 Feten mit insgesamt 1413 Untersuchungen wurden eingeschlossen. Über den gesamten Beobachtungszeitraum zeigte sich in der Regressionsanalyse keine signifikante Veränderung der STV (p = 0,38). Einzig am Entbindungstag ließ sich ein deutlicher Abfall der STV nachweisen (mittlere STV d28-22: 7,97 vs. mittlere STV d0: 6,80). Die Auswertung der Dopplerindizes der UA und MCA zeigte eine stetige Verschlechterung der erhobenen Werte, beginnend ca. 3 Wochen vor Entbindung (p = 0,007, UA und p < 0,001, MCA). Eine signifikante Korrelation zwischen einzelnen Dopplerindizes einerseits und STV andererseits bestand nicht, unabhängig von der Zeitdifferenz zwischen den jeweiligen Untersuchungen.
Schlussfolgerung Die fetalen STV-Werte zeigten ausschließlich am Entbindungstag einen signifikanten Abfall, sodass bei diesem Risikokollektiv mindestens täglich eine cCTG-Untersuchung durchgeführt werden sollte. Dopplerparameter von A. umbilicalis (UA) und A. cerebri media (MCA) jedoch zeigten bereits 3 Wochen vor Entbindung eine kontinuierliche Verschlechterung.
-
References
- 1 Brodszki J, Morsing E, Malcus P. et al. Early intervention in management of very preterm growth‐restricted fetuses: 2‐year outcome of infants delivered on fetal indication before 30 gestational weeks. Ultrasound in Obstetrics & Gynecology 2009; 34: 288-296
- 2 American College of O, Gynecologists. . ACOG Practice bulletin no. 134: fetal growth restriction. Obstetrics and gynecology 2013; 121: 1122-1133
- 3 Unterscheider J, Daly S, Geary MP. et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. American journal of obstetrics and gynecology 2013; 208: 290. e291-290. e296
- 4 Levine TA, Grunau RE, McAuliffe FM. et al. Early childhood neurodevelopment after intrauterine growth restriction: a systematic review. Pediatrics 2014;
- 5 Kehl S, Dotsch J, Hecher K. et al. Intrauterine Growth Restriction. Guideline of the German Society of Gynecology and Obstetrics (S2k-Level, AWMF Registry No. 015/080, October 2016). Geburtshilfe Frauenheilkd 2017; 77: 1157-1173 . DOI:10.1055/s-0043-118908
- 6 Lees C, Marlow N, Arabin B. et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 2013; 42: 400-408
- 7 Group GS. A randomised trial of timed delivery for the compromised preterm fetus: short term outcomes and Bayesian interpretation. BJOG: an international journal of obstetrics and gynaecology 2003; 110: 27-32
- 8 Baschat AA, Cosmi E, Bilardo CM. et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstetrics & Gynecology 2007; 109: 253-261
- 9 Hecher K, Bilardo C, Stigter R. et al. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound in obstetrics & gynecology 2001; 18: 564-570
- 10 Talmor A, Daemen A, Murdoch E. et al. Defining the relationship between fetal Doppler indices, abdominal circumference and growth rate in severe fetal growth restriction using functional linear discriminant analysis. Journal of The Royal Society Interface 2013; 10: 20130376
- 11 Street P, Dawes GS, Moulden M. et al. Short-term variation in abnormal antenatal fetal heart rate records. American journal of obstetrics and gynecology 1991; 165: 515-523
- 12 Anceschi MM, Piazze JJ, Ruozi-Berretta A. et al. Validity of short term variation (STV) in detection of fetal acidemia. Journal of perinatal medicine 2003; 31: 231-236
- 13 Galazios G, Tripsianis G, Tsikouras P. et al. Fetal distress evaluation using and analyzing the variables of antepartum computerized cardiotocography. Archives of gynecology and obstetrics 2010; 281: 229-233
- 14 Lees CC, Marlow N, van Wassenaer-Leemhuis A. et al. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet 2015; 385: 2162-2172
- 15 Wolf H, Arabin B, Lees CC. et al. Longitudinal study of computerized cardiotocography in early fetal growth restriction. Ultrasound in Obstetrics & Gynecology 2017; 50: 71-78
- 16 Nijhuis I, Ten Hof J, Mulder E. et al. Numerical fetal heart rate analysis: nomograms, minimal duration of recording and intrafetal consistency. Prenatal and Neonatal Medicine 1998; 3: 314-322
- 17 Hecher K, Campbell S, Snijders R. et al. Reference ranges for fetal venous and atrioventricular blood flow parameters. Ultrasound in Obstetrics & Gynecology 1994; 4: 381-390
- 18 Harrington K, Carpenter R, Nguyen M. et al. Changes observed in Doppler studies of the fetal circulation in pregnancies complicated by pre‐eclampsia or the delivery of a small‐for‐gestational‐age baby. I. Cross‐sectional analysis. Ultrasound in Obstetrics & Gynecology 1995; 6: 19-28
- 19 Schaffer H, Staudach A. Doppler-Referenzkurven. Frauenklinik LKH Salzburg. Personal Communication reported in Viewpoint (GE) reporting package. 1997
- 20 Anceschi MM, Ruozi-Berretta A, Piazze JJ. et al. Computerized cardiotocography in the management of intrauterine growth restriction associated with Doppler velocimetry alterations. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 2004; 86: 365-370
- 21 Serra V, Moulden M, Bellver J. et al. The value of the short‐term fetal heart rate variation for timing the delivery of growth‐retarded fetuses. BJOG: An International Journal of Obstetrics & Gynaecology 2008; 115: 1101-1107
- 22 Dawes GS, Moulden M, Redman CW. Short-term fetal heart rate variation, decelerations, and umbilical flow velocity waveforms before labor. Obstetrics and gynecology 1992; 80: 673-678
- 23 Mlynarczyk M, Chauhan SP, Baydoun HA. et al. The clinical significance of an estimated fetal weight below the 10th percentile: a comparison of outcomes of < 5th vs 5th–9th percentile. American journal of obstetrics and gynecology 2017;
- 24 Wood SN. On p-values for smooth components of an extended generalized additive model. Biometrika 2012; 100: 221-228
- 25 Team RC. A language and environment for statistical computing. R Foundation for statistical computing, 2015. Vienna, Austria: 2016
- 26 Ribbert L, Visser G, Mulder E. et al. Changes with time in fetal heart rate variation, movement incidences and haemodynamics in intrauterine growth retarded fetuses: a longitudinal approach to the assessment of fetal well being. Early human development 1993; 31: 195-208
- 27 Snijders RJ, Ribbert LS, Visser GH. et al. Numeric analysis of heart rate variation in intrauterine growth-retarded fetuses: a longitudinal study. American journal of obstetrics and gynecology 1992; 166: 22-27
- 28 Stumpfe FM, Kehl S, Pretscher J. et al. Correlation of short-term variation and Doppler parameters with adverse perinatal outcome in low-risk fetuses at term. Arch Gynecol Obstet 2019; 299: 411-420 . DOI:10.1007/s00404-018-4978-z
- 29 Lecarpentier E, Cordier AG, Proulx F. et al. Hemodynamic impact of absent or reverse end-diastolic flow in the two umbilical arteries in growth-restricted fetuses. PloS one 2013; 8: e81160
- 30 Trapani Jr A, Gonçalves L, Trapani T. et al. Comparison between transdermal nitroglycerin and sildenafil citrate in intrauterine growth restriction: effects on uterine, umbilical and fetal middle cerebral artery pulsatility indices. Ultrasound in Obstetrics & Gynecology 2016; 48: 61-65
- 31 Trapani A, Gonçalves L, Pires MS. Transdermal nitroglycerin in patients with severe pre‐eclampsia with placental insufficiency: effect on uterine, umbilical and fetal middle cerebral artery resistance indices. Ultrasound in Obstetrics & Gynecology 2011; 38: 389-394
- 32 Fu J, Olofsson P. Fetal ductus venosus, middle cerebral artery and umbilical artery flow responses to uterine contractions in growth‐restricted human pregnancies. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 2007; 30: 867-873