Tierarztl Prax Ausg G Grosstiere Nutztiere 2019; 47(06): 346-354
DOI: 10.1055/a-1019-7511
Originalartikel

Verlauf der nach 3 unterschiedlichen Formeln berechneten Energiebilanz bei Holstein-Friesian-Kühen in der Frühlaktation

Course of the energy balance in the early lactation of Holstein-Friesian cows calculated according to 3 different models
Kilian Peisker
1   Klinik für Klauentiere, Freie Universität Berlin, Berlin
,
Rudolf Staufenbiel
1   Klinik für Klauentiere, Freie Universität Berlin, Berlin
,
Thomas Engelhard
2   Landesanstalt für Landwirtschaft und Gartenbau Sachsen-Anhalt, Iden
,
Laura Pieper
1   Klinik für Klauentiere, Freie Universität Berlin, Berlin
3   Institut für Veterinär-Epidemiologie und Biometrie, Freie Universität Berlin, Berlin
› Author Affiliations

Zusammenfassung

Ziel Das Ziel der Studie war ein Vergleich der Ergebnisse der mit 3 unterschiedlichen Formeln kalkulierten Werte zur Energiebilanz von Milchkühen. Beschrieben werden sollte der Verlauf der Energiebilanz bis zum 100. Laktationstag bei Holstein-Friesian-Milchkühen aus einer Herde mit einer mittleren 305-Tage-Milchleistung von 11 761 kg.

Material und Methoden Zur Datenerhebung standen innerhalb von 2 Untersuchungszeiträumen insgesamt 193 Milchkühe zur Verfügung. Zu festgelegten Untersuchungszeitpunkten erfolgten Messungen der Lebendmasse. Die Futteraufnahme wurde mittels transpondergestützter Wiegetröge ermittelt. Die Milchdaten stammten aus den entsprechenden Milchleistungskontrollen. Die Energiebilanz wurde durch die Berechnung nach der Gesellschaft für Ernährungsphysiologie (GfE), Jans und Kessler sowie nach dem National Research Council (NRC) modifiziert nach Collard bestimmt.

Ergebnisse Die 3 mathematischen Modelle ergeben sehr ähnliche Werte. Die modifizierte Berechnung nach Collard lieferte systematisch geringere Werte der Energiebilanz. Minimalwerte der Energiebilanz traten in der Kolostralphase auf. Der Übergang von der negativen zur positiven Energiebilanz zeigte sich im Mittel 53 Tage nach der Kalbung.

Schlussfolgerungen und klinische Relevanz Alle 3 Berechnungsmethoden sind geeignet, die Energiebilanz der Milchkühe post partum mit ähnlichen Ergebnissen darzustellen. Über 50 % der untersuchten Kühe erreichten vor dem 60. Laktationstag eine positive Energiebilanz. Demnach ist der aus der Literatur zu erwartende Verlauf der Energiebilanz mit einem Tiefpunkt um den 60. Tag post partum nicht prinzipiell für jede Herde anzunehmen. Strategien zur Verbesserung bei negativer Energiebilanz hinsichtlich Zeitpunkt, Ausmaß und Dauer in der Frühlaktation müssen individuell für jede Herde erarbeitet werden und erfordern weitere Forschung.

Abstract

Objective The aim of this study was to compare the results of the energy balance of dairy cows calculated with 3 different formulas. The course of the energy balance up to the 100th lactation day in Holstein-Friesian dairy cows from a herd with a mean 305-day milk yield of 11 761 kg was to be described.

Materials and methods Data from a total of 193 dairy cows were available within 2 study periods. Body weight measurements were taken at fixed time points. The feed intake was determined by means of transponder-supported feeding troughs. Milk data was obtained from the corresponding milking recordings. Energy balance was determined by calculation according to the society for nutritional physiology (GfE), Jans and Kessler and National Research Council (NRC) modified according to Collard.

Results The 3 models yielded very similar results. The calculation modified by Collard, however, generally led to lower values. Minimum values for energy balance were calculated in the colostrum phase. The transition from the negative to the positive energy balance occurred in the mean 53 days postpartum.

Conclusion and clinical relevance All 3 calculation methods were equally suitable to assess energy balance of dairy cows conveying similar results. Over 50 % of the examined cows reach a positive energy balance before the 60th day of lactation. According to the literature, the course of the energy balance with a low point around the 60th day postpartum is not to be assumed in principle for each herd. Strategies to improve negative energy balance with regard to time point, extent, and duration in the early lactation must be developed individually for each herd and still require research.



Publication History

Received: 10 April 2018

Accepted: 04 July 2019

Article published online:
06 December 2019

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Bauman DE, Currie WB. Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J Dairy Sci 1980; 63: 1514-1529
  • 2 Bergmann J, Heuwieser W, Fischer B. et al. Pituitary reaction of a single GnRH administration in post partum dairy cows considering negative energy balance. Tierarztl Prax G 1999; 27: 154-160
  • 3 Berry DP, Veerkamp RF, Dillon P. Phenotypic profils for bodyweight, body condition score, energy intake, and energy balance across different parities and concentrate feeding levels. Livest Sci 2006; 104: 1-2
  • 4 Brade W. Die Holsteinkuh der Zukunft züchten: Aktueller Stand und künftige Anforderungen. Tierärztl Umsch 2018; 73: 353-361
  • 5 Bruckmaier RM, Lehmann E, Hugi D. et al. Ultrasonic measurement of longissimus dorsi muscle and backfat, associated with metabolic and endocrine traits, during fattening of intact and castrated male cattle. Livest Prod Sci 1998; 53: 123-134
  • 6 Butler WR, Everett RW, Coppock CE. The relationships between energy balance, milk production and ovulation in postpartum Holstein cows. J Anim Sci 1981; 53: 742-748
  • 7 Buttchereit N, Stamer E, Junge W. et al. Short communication: Genetic relationships among daily energy balance, feed intake, body condition score, and fat to protein ratio of milk in dairy cows. J Dairy Sci 2011; 94: 1586-1591
  • 8 Buttchereit N, Stamer E, Junge W. et al. Genetic parameters for energy balance, fat/protein ratio, body condition score and disease traits in German Holstein cows. J Anim Breed Genet 2012; 129: 280-288
  • 9 Collard BL, Boettcher PJ, Dekkers JC. et al. Relationships between energy balance and health traits of dairy cattle in early lactation. J Dairy Sci 2000; 83: 2683-2690
  • 10 Dann HM, Morin DE, Bollero GA. et al. Prepartum intake, postpartum induction of ketosis, and periparturient disorders affect the metabolic status of dairy cows. J Dairy Sci 2005; 88: 3249-3264
  • 11 Drackley JK, Cardoso FC. Prepartum and postpartum nutritional management to optimize fertility in high-yielding dairy cows in confined TMR systems. Animal 2014; 8 (Suppl. 01) 5-14
  • 12 Ebert T, Koch C, Romberg FJ. et al. Investigations on development, duration and consequences of negative energy balance in dairy cows. Züchtungskunde 2017; 89: 321-332
  • 13 Edmonson AJ, Lean IJ, Weaver LD. et al. A Body Condition Scoring Chart for Holstein Dairy-Cows. J Dairy Sci 1989; 72: 68-78
  • 14 GfE. Gesellschaft für Ernährung, Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder. Frankfurt am Main: DLG-Verlag; 2001
  • 15 Gross J, van Dorland HA, Bruckmaier RM. et al. Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance with subsequent realimentation. J Dairy Sci 2011; 94: 1820-1830
  • 16 Harrison RO, Ford SP, Young JW. et al. Increased milk production versus reproductive and energy status of high producing dairy cows. J Dairy Sci 1990; 73: 2749-2758
  • 17 Heringstad B, Klemetsdal G, Ruane J. Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livest Prod Sci 2000; 64: 95-106
  • 18 Hoffmann M. Negative Energiebilanz bei Kühen. REKASAN-Journal 2016; 23: 4-11
  • 19 Huttmann H, Stamer E, Junge W. et al. Analysis of feed intake and energy balance of high-yielding first lactating Holstein cows with fixed and random regression models. Animal 2009; 3: 181-188
  • 20 Ingvartsen KL, Andersen JB. Integration of metabolism and intake regulation: a review focusing on periparturient animals. J Dairy Sci 2000; 83: 1573-1597
  • 21 Ingvartsen KL, Dewhurst RJ, Friggens NC. On the relationship between lactational performance and health: is it yield or metabolic imbalance that cause production diseases in dairy cattle? A position paper. Livest Prod Sci 2003; 83: 277-308
  • 22 Ingvartsen KL, Moyes K. Nutrition, immune function and health of dairy cattle. Animal 2013; 7: 112-122
  • 23 Janovick NA, Drackley JK. Prepartum dietary management of energy intake affects postpartum intake and lactation performance by primiparous and multiparous Holstein cows. J Dairy Sci 2010; 93: 3086-3102
  • 24 Jans F, Kessler J. Fütterungsempfehlungen für die Milchkuh. Landwirtschaftliche Lehrmittelzentrale Zollikofen. Switzerland: Eidgenössische Forschungsanstalt für Nutztiere; 1999: 39-50
  • 25 Jorritsma R, Wensing T, Kruip TA. et al. Metabolic changes in early lactation and impaired reproductive performance in dairy cows. Vet Res 2003; 34: 11-26
  • 26 Kessel S, Stroehl M, Meyer HH. et al. Individual variability in physiological adaptation to metabolic stress during early lactation in dairy cows kept under equal conditions. J Anim Sci 2008; 86: 2903-2912
  • 27 Martens H. Leistung und Gesundheit von Milchkühen: Bedeutung von Genetik (Ursache) und Management (Wirkung). Tierarztl Prax Ausg G Grosstiere Nutztiere 2016; 44: 253-258
  • 28 Nielsen HM, Friggens NC, Lovendahl P. et al. Influence of breed, parity, and stage of lactation on lactational performance and relationship between body fatness and live weight. Livest Prod Sci 2003; 79: 119-133
  • 29 NRC. National Research Council (U. S.). ed. Nutrient requirements of dairy cattle. Washington, D. C.: National Academy Press; 1989
  • 30 Oftedal OT. The adaptation of milk secretion to the constraints of fasting in bears, seals, and baleen whales. J Dairy Sci 1993; 76: 3234-3246
  • 31 Ospina PA, McArt JA, Overton TR. et al. Using nonesterified fatty acids and beta-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance. Vet Clin North Am Food Anim Pract 2013; 29: 387-412
  • 32 Roche JR, Bell AW, Overton TR. et al. Nutritional management of the transition cow in the 21st century – a paradigm shift in thinking. Anim Prod Sci 2013; 53: 1000-1023
  • 33 Rossow N. Die Energiebilanzsituation der Milchkuh in der Frühlaktation. Data Service Paretz GmbH. http://www.portal-rind.de/data/artikel/49/artikel_49.pdf
  • 34 Statista. Milchleistung je Kuh in Deutschland in den Jahren 1900 bis 2016 (in Kilogramm). 2018 https://de.statista.com/statistik/daten/studie/153061/umfrage/durchschnittlicher-milchertrag-je-kuh-in-deutschland-seit-2000/ Zugriff am 09.08.2019
  • 35 Staufenbiel R, Staufenbiel B, Lachmann I. Energy and fat metabolism, fertility and general health in dairy cows. Arch Tierzucht 1993; 36: 121-137
  • 36 Staufenbiel R, Arndt G, Schroder U. et al. [Body condition and metabolic stability as the basis for high milk yield and undisturbed fertility in dairy cows–-a contribution for deduction of reference values]. Dtsch Tierarztl Wochenschr 2004; 111: 214-220
  • 37 Thorup VM, Edwards D, Friggens NC. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score. J Dairy Sci 2012; 95: 1784-1793
  • 38 van Straten M, Shpigel NY, Friger M. Analysis of daily body weight of high-producing dairy cows in the first one hundred twenty days of lactation and associations with ovarian inactivity. J Dairy Sci 2008; 91: 3353-3362
  • 39 Wall EH, McFadden TB. Triennial Lactation Symposium: A local affair: How the mammary gland adapts to changes in milking frequency. J Anim Sci 2012; 90: 1695-1707
  • 40 Walters AH, Pryor AW, Bailey TL. et al. Milk yield, energy balance, hormone, follicular and oocyte measures in early and mid-lactation Holstein cows. Theriogenology 2002; 57: 949-961