Ultraschall Med 2021; 42(05): 533-540
DOI: 10.1055/a-1134-4937
Original Article

US-Elastography for Breast Lesion Characterization: Prospective Comparison of US BIRADS, Strain Elastography and Shear wave Elastography

US-Elastografie zur Charakterisierung von Brustläsionen: Prospektiver Vergleich von US-BI-RADS, Strain-Elastografie und Scherwellen-Elastografie
Vito Cantisani
1   Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
,
Emanuele David
2   Radiological Sciences, Radiology Unit, Papardo-Hospital, Messina, Italy, Messina, Italy
,
Richard G. Barr
3   Radiology, Northeastern Ohio Medical University, Youngstown, United States
,
Maija Radzina
4   Radiology Department, Pauls Stradins Clinical University Hospital, Riga Stradins University, Faculty of Medicine, University of Latvia, Riga, Latvia
,
Valeria de Soccio
1   Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
,
Daniela Elia
1   Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
,
Carlo De Felice
1   Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
,
Federica Pediconi
1   Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
,
Silvia Gigli
5   Radiology, Umberto I Policlinico di Roma, Italy
,
Rossella Occhiato
1   Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
,
Daniela Messineo
1   Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
,
Daniele Fresilli
1   Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
,
Laura Ballesio
1   Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
,
Ferdinando D'Ambrosio
1   Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
› Author Affiliations

Abstract

Purpose To evaluate the diagnostic performance of strain elastography (SE) and 2 D shear wave elastography (SWE) and SE/SWE combination in comparison with conventional multiparametric ultrasound (US) with respect to improving BI-RADS classification results and differentiating benign and malignant breast lesions using a qualitative and quantitative assessment.

Materials and Methods In this prospective study, 130 histologically proven breast masses were evaluated with baseline US, color Doppler ultrasound (CDUS), SE and SWE (Toshiba Aplio 500 with a 7–15 MHz wide-band linear transducer). Each lesion was classified according to the BIRADS lexicon by evaluating the size, the B-mode and color Doppler features, the SE qualitative (point color scale) and SE semi-quantitative (strain ratio) methods, and quantitative SWE. Histological results were compared with BIRADS, strain ratio (SR) and shear wave elastography (SWE) all performed by one investigator blinded to the clinical examination and mammographic results at the time of the US examination. The area under the ROC curve (AUC) was calculated to evaluate the diagnostic performance of B-mode US, SE, SWE, and their combination.

Results Histological examination revealed 47 benign and 83 malignant breast lesions. The accuracy of SR was statistically significantly higher than SWE (sensitivity, specificity and AUC were 89.2 %, 76.6 % and 0.83 for SR and 72.3 %, 66.0 % and 0.69 for SWE, respectively, p = 0.003) but not higher than B-mode US (B-mode US sensitivity, specificity and AUC were 85.5 %, 78.8 %, 0.821, respectively, p = 1.000).

Conclusion Our experience suggests that conventional US in combination with both SE and SWE is a valid tool that can be useful in the clinical setting, can improve BIRADS category assessment and may help in the differentiation of benign from malignant breast lesions, with SE having higher accuracy than SWE.

Zusamenfassung

Ziel Evaluierung der diagnostischen Leistung der Strain-Elastografie (SE) und der 2D-Scherwellen-Elastografie (SWE) sowie der SE/SWE-Kombination im Vergleich zum konventionellen multiparametrischen Ultraschall (US) zur Verbesserung der Ergebnisse der BI-RADS-Klassifikation und zur Differenzierung benigner und maligner Brustläsionen mittels einer qualitativen und quantitativen Bewertung.

Material und Methoden In dieser prospektiven Studie wurden 130 histologisch nachgewiesene Raumforderungen der Brust mit Basis-US, Farbdoppler-Ultraschall (CDUS), SE und SWE (Toshiba Aplio 500 mit einem 7–15MHz-Breitband-Linearschallkopf) bewertet. Jede Läsion wurde nach dem BIRADS-Lexikon klassifiziert, indem die Größe, die B-Modus- und Farbdoppler-Merkmale, die qualitativen (Punkt-Farbskala) und semiquantitativen (Strain-Ratio) SE-Methoden sowie die quantitative SWE bewertet wurden. Die histologischen Ergebnisse wurden mit BI-RADS, Strain-Ratio (SR) und Scherwellen-Elastografie (SWE) verglichen, die alle von demselben Untersucher durchgeführt wurden, der zum Zeitpunkt der US-Untersuchung gegenüber der klinischen Untersuchung und den mammografischen Ergebnissen verblindet war. Die Fläche unter der ROC-Kurve (AUC) wurde berechnet, um die diagnostische Leistung von B-Mode-US, SE, SWE und deren Kombination zu bewerten.

Ergebnisse Die histologische Untersuchung ergab 47 gutartige und 83 bösartige Brustläsionen. Die Genauigkeit der SR war statistisch signifikant höher als bei der SWE (Sensitivität 89,2 vs. 72,3 %; Spezifität 76,6 vs. 66,0 %; AUC 0,83 vs. 0,69; p = 0,003), aber nicht höher als beim B-Modus-US (Sensitivität 85,5 %; Spezifität 78,8 %; AUC 0,821; p = 1,000).

Schlussfolgerung Nach unserer Erfahrung sind der konventionelle US in Kombination mit beiden, SE und SWE, gültige Methoden, die im klinischen Alltag nützlich sein können, um die Beurteilung der BI-RADS-Kategorie zu verbessern und die Differenzierung von gutartigen und bösartigen Brustläsionen zu unterstützen – bei höherer Genauigkeit der SE als der SWE.



Publication History

Received: 15 January 2020

Accepted: 18 February 2020

Article published online:
24 April 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ricci P, Cantisani V, Ballesio L. et al. Benign and malignant breast lesions: efficacy of real time contrast-enhanced ultrasound vs. magnetic resonance imaging. Ultraschall in Med 2007; 28: 57-62
  • 2 Moss HA, Britton PD, Flower CD. et al. How reliable is modern breast imaging in differentiating benign from malignant breast lesions in the symptomatic population?. Clin Radiol 1999; 54: 676-682
  • 3 Mus RD, Borelli C, Bult P. et al Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions. Eur J Radiol 2017; 89: 90-96
  • 4 Gigli S, Amabile MI, Di Pastena F. et al Magnetic Resonance Imaging after Breast Oncoplastic Surgery: An Update. Breast Care (Basel) 2017; 12: 260-265
  • 5 Greenwood HI, Freimanis RI, Carpentier BM. et al Clinical Breast Magnetic Resonance Imaging: Technique, Indications, and Future Applications. Semin Ultrasound CT MR 2018; 39: 45-59
  • 6 Suo S, Cheng F, Cao M. et al Multiparametric diffusion-weighted imaging in breast lesions: Association with pathologic diagnosis and prognostic factors. J Magn Reson Imaging 2017; 46: 740-750
  • 7 Jacobs MA, Barker PB, Bluemke DA. et al. Benign and malignant breast lesions: diagnosis with multiparametric MR imaging. Radiology 2003; 229: 225-232
  • 8 Weinreb JC, Newstead G. MR imaging of the breast. Radiology 1995; 196: 593-610
  • 9 Park CS, Lee JH, Yim HW. et al. Observer agreement using the ACR Breast Imaging Reporting and Data System (BI-RADS)-ultrasound, First Edition (2003). Korean J Radiol 2007; 8: 397-402
  • 10 Barr RG. Real-time ultrasound elasticity of the breast: initial clinical results. Ultrasound Q 2010; 26: 61-66
  • 11 Barr RG, Destounis S, Lackey LB. et al. Evaluation of breast lesions using sonographic elasticity imaging: a multicenter trial. J Ultrasound Med 2012; 31: 281-287
  • 12 Cosgrove D, Piscaglia F, Bamber J. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall in Med 2013; 34: 238-253
  • 13 Cosgrove D, Barr R, Bojunga J. et al WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med Biol 2017; 43: 4-26
  • 14 Bamber J, Cosgrove D, Dietrich CF. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall in Med 2013; 34: 169-184
  • 15 Shiina T, Nightingate KR, Palmeri ML. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 2015; 41: 1126-1147
  • 16 Barr RG, Nakashima K, Amy D. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast. Ultrasound Med Biol 2015; 41: 1148-1160
  • 17 Comstock C. Breast magnetic resonance imaging interpretation using computer-aided detection. Semin Roentgenol 2011; 46: 76-85
  • 18 Barr RG. Sonographic breast elastography: a primer. J Ultrasound Med 2012; 31: 773-783
  • 19 Athanasiou A, Tardivon A, Tanter M. et al. Breast lesions: quantitative elastography with supersonic shear imaging–preliminary results. Radiology 2010; 256: 297-303
  • 20 Grajo JR, Barr RG. Strain elastography for prediction of breast cancer tumor grades. J Ultrasound Med 2014; 33: 129-134
  • 21 Chang RJ, Kirkpatrick K, De Boer RH. et al Does immediate breast reconstruction compromise the delivery of adjuvant chemotherapy?. Breast 2013; 22: 64-69
  • 22 Barr RG, Zhang Z. Shear-wave elastography of the breast: value of quality measure and comparison with strain elastograph. Radiology 2015; 275: 45-53
  • 23 Săftoiu A, Gilja OH, Sidhu PS. et al The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018. Ultraschall in Med 2019; 40: 425-453
  • 24 D’Orsi CJ, Sickles EA, Mendelson EB. et al. ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston, VA: American College of Radiology; 2013
  • 25 Mendelson EB, Böhm-Vélez M, Berg WA. et al ACR BI-RADS Ultrasound. In: ACR BI-RADS Atlas, Breast Imaging Reporting and Data System, 5th Edition, American College of Radiology, Reston, VA 2013: 128-130
  • 26 Barr RG, Zhang J. et al. Effects of Precompression on Elasticity Imaging of the Breast Development of a Clinically Useful Semiquantitative Method of Precompression Assessment. Ultrasound Med 2012; 31: 895-902
  • 27 Harvey JA, Moran RE. US-guided core needle biopsy of the breast: technique and pitfalls. Radiographics 1998; 18: 867-877
  • 28 Chiorean A, Duma MM, Dudea SM. et al. Real-time ultrasound elastography of the breast: state of the art. Medical ultrasonography 2008; 10: 73-82
  • 29 Tan SM, Teh HS, Mancer JF. et al. Improving B mode ultrasound evaluation of breast lesions with real-time ultrasound elastography–a clinical approach. Breast 2008; 17: 252-257
  • 30 Nakashima K, Moriya T. Comprehensive ultrasound diagnosis for intraductal spread of primary breast cancer. Breast Cancer 2013; 20: 3-12
  • 31 Itoh A, Ueno E, Tohno E. et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239: 341-350
  • 32 Ueno EUT, Bando H, Tohno E. et al. New quantitative method in breast elastography: fat lesion ratio (FLR). Paper presented at: Radiological Society of North America 93rd Scientific Assembly and Annual Meeting; November 25–30, 2007. Chicago, IL:
  • 33 Raza S, Odulate A, Ong EM. et al. Using real-time tissue elastography for breast lesion evaluation: our initial experience. J Ultrasound Med 2010; 29: 551-563
  • 34 Farrokh A, Wojcinski S, Degenhardt F. Diagnostic value of strain ratio measurement in the differentiation of malignant and benign breast lesions. Ultraschall in Med 2011; 32: 400-405
  • 35 Alhabshi SM, Rahmat K, Abdul Halim N. et al. Semi-quantitative and qualitative assessment of breast ultrasound elastography in differentiating between malignant and benign lesions. Ultrasound Med Biol 2013; 39: 568-578
  • 36 Sadigh G, Carlos RC, Neal CH. et al. Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. Breast Cancer Res Treat 2012; 134: 923-931
  • 37 Barr RG, DeVita R, Destounis S. et al Agreement Between an Automated Volume Breast Scanner and Handheld Ultrasound for Diagnostic Breast Examinations. J Ultrasound Med 2017; 36: 2087-2092
  • 38 Barr RG, De Silvestri A, Scotti V. et al Diagnostic Performance and Accuracy of the 3 Interpreting Methods of Breast Strain Elastography: A Systematic Review and Meta-analysis. J Ultrasound Med 2019; 38: 1397-1404
  • 39 Berg WA, Cosgrove DO, Dore CJ. et al. Investigators. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 2012; 262: 435-449
  • 40 Chang JM, Moon WK, Cho N. et al. Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases. Breast Cancer Res Treat 2011; 129: 89-97
  • 41 Evans A, Whelehan P, Thomson K. et al. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res 2010; 12: R104
  • 42 Nightingale K, McAleavey S, Trahey G. Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med Biol 2003; 29: 1715-1723
  • 43 Seo M, Ahn HS, Park SH. et al Comparison and Combination of Strain and Shear Wave Elastography of Breast Masses for Differentiation of Benign and Malignant Lesions by Quantitative Assessment: Preliminary Study. J Ultrasound Med 2018; 37: 99-109
  • 44 Fujioka T, Mori M, Kubota K. et al Simultaneous comparison between strain and shear wave elastography of breast masses for the differentiation of benign and malignant lesions by qualitative and quantitative assessments. Breast Cancer 2019; 26: 792-798
  • 45 Barr RG. Breast Elastography: How to Perform and Integrate into “Best Practice” Patient Management Algorithm. JUM in press