Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(16): 1625-1628
DOI: 10.1055/a-1328-0352
DOI: 10.1055/a-1328-0352
cluster
Modern Nickel-Catalyzed Reactions
Zn-Mediated Hydrodeoxygenation of Tertiary Alkyl Oxalates
This work was supported by the National Natural Science Foundation of China (grants 21871173 and 21572140).

Abstract
Herein we describe a general, mild, and scalable method for hydrodeoxygenation of readily accessible tertiary alkyl oxalates by Zn/silane under Ni-catalyzed conditions. The reduction method is suitable for an array of structural motifs derived from tertiary alcohols that bear diverse functional groups, including the synthesis of a key intermediate en route to estrone.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1328-0352.
- Supporting Information
Publication History
Received: 29 October 2020
Accepted after revision: 02 December 2020
Accepted Manuscript online:
02 December 2020
Article published online:
07 January 2021
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 1b Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 1c Pound SM, Watson MP. Chem. Commun. 2018; 54: 12286
- 1d Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita AM, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
- 1e Tollefson EJ, Hanna LE, Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
- 2a Bisz E, Szostak M. ChemSusChem 2017; 10: 3964
- 2b Sundararaju B, Achard M, Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
- 2c Liu J, Ye Y, Sessler JL, Gong H. Acc. Chem. Res. 2020; 53: 1833
- 2d Lu X, Zhang Z.-Q, Lu Y, Zhang B, Wang B, Gong T.-J, Tian C.-L, Xiao B, Fu Y. Chin. J. Chem. 2019; 37: 11
- 3a Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
- 3b Zeng H, Qiu Z, Domínguez-Huerta A, Hearne Z, Chen Z, Li C.-J. ACS Catal. 2017; 7: 510
- 4a Crich D, Quintero L. Chem. Rev. 1989; 89: 1413
- 4b McCombie SW, Motherwell WB, Tozer MJ. Org. React. 2012; 77: 161
- 4c Dolan SC, MacMillan J. J. Chem. Soc., Chem. Commun. 1985; 1588
- 5a Jamison CR, Overman LE. Acc. Chem. Res. 2016; 49: 1578
- 5b Nawrat CC, Jamison CR, Slutskyy Y, MacMillan DW. C, Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
- 5c Lackner GL, Quasdorf KW, Overman LE. J. Am. Chem. Soc. 2013; 135: 15342
- 5d Gao C, Li J, Yu J, Yang H, Fu H. Chem. Commun. 2016; 52: 7292
- 5e Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 13862
- 5f Rackl D, Kais V, Lutsker E, Reiser O. Eur. J. Org. Chem. 2017; 2130
- 6 Gao J, Rao P, Xu K, Wang S, Wu Y, He C, Ding H. J. Am. Chem. Soc. 2020; 142: 4592
- 7 Xu B, Xun W, Su S, Zhai H. Angew. Chem. Int. Ed. 2020; 59: 16475
- 8 Pan S, Chen S, Dong G. Angew. Chem. Int. Ed. 2018; 57: 6333
- 9a Ye Y, Chen H, Sessler JL, Gong H. J. Am. Chem. Soc. 2019; 141: 820
- 9b Gao M, Sun D, Gong H. Org. Lett. 2019; 21: 1645
- 9c Pan Y, Gong Y, Song Y, Tong W, Gong H. Org. Biomol. Chem. 2019; 17: 4230
- 10a Álvarez-Bercedo P, Martin R. J. Am. Chem. Soc. 2010; 132: 17352
- 10b Tobisu M, Yamakawa K, Shimasaki T, Chatani N. Chem. Commun. 2011; 47: 2946
- 10c Speckmeier E, Padié C, Zeitler K. Org. Lett. 2015; 17: 4818
- 10d Qin T, Malins LR, Edwards JT, Merchant RR, Novak AJ. E, Zhong JZ, Mille RB, Yan M, Yuan C, Eastgate MD, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 260
- 10e Sergeev AG, Hartwig JF. Science 2011; 332: 439
- 11a Ye Y, Chen H, Yao K, Gong H. Org. Lett. 2020; 22: 2070
- 11b Chen H, Ye Y, Tong W, Fang J, Gong H. Chem. Commun. 2020; 56: 454
- 12a Wang X, Ma G, Peng Y, Pitsch CE, Moll BJ, Ly TD, Wang X, Gong H. J. Am. Chem. Soc. 2018; 140: 14490
- 12b Chen H, Jia X, Yu Y, Qian Q, Gong H. Angew. Chem. Int. Ed. 2017; 56: 13103
- 12c Wang X, Wang S, Xue W, Gong H. J. Am. Chem. Soc. 2015; 137: 11562
- 12d Zhao C, Jia X, Wang X, Gong H. J. Am. Chem. Soc. 2014; 136: 17645
- 12e Primer DN, Molander GA. J. Am. Chem. Soc. 2017; 139: 9847
- 12f Green SA, Vásquez-Céspedes S, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 11317
- 12g Green SA, Huffman TR, McCourt RO, Puyl V, Shenvi RA. J. Am. Chem. Soc. 2019; 141: 7709
- 12h García-Domínguez A, Li Z, Nevado C. J. Am. Chem. Soc. 2017; 139: 6835
- 12i Lu X, Wang Y, Zhang B, Pi J.-J, Wang X.-X, Gong T.-J, Xiao B, Fu Y. J. Am. Chem. Soc. 2017; 139: 12632
- 13a Breitenfeld J, Scopelliti R, Hu X. Organometallics 2012; 31: 2128
- 13b Cornella J, Gómez-Bengoa E, Martin R. J. Am. Chem. Soc. 2013; 135: 1997
- 14a Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, Wangelin AJ. Chem. Eur. J. 2014; 20: 6828
- 14b Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
- 14c Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 14d Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 3: 1411
- 15a Prévost S, Dupré N, Leutzsch M, Wang Q, Wakchaure V, List B. Angew. Chem. Int. Ed. 2014; 53: 8770
- 15b Gong Q, Wen J, Zhang X. Chem. Sci. 2019; 10: 6350
- 16 Reddy BR. P, Chowdhury S, Auffrant A, Gosmini C. Adv. Synth. Catal. 2018; 360: 3026
- 17 Zhang J, Li Z, Zhuo J, Cui Y, Han T, Li C. J. Am. Chem. Soc. 2019; 141: 8372
-
18 See the Supporting Information for details.
- 19 Enev VS, Harre JM, Nickisch K. Tetrahedron: Asymmetry 1998; 9: 2693
For reviews on aryl–O couplings, see:
For more examples on reductive formation of all-carbon quaternary centers, see:
For reviews on cross-electrophile couplings, see: