Ultraschall Med 2021; 42(02): 128-153
DOI: 10.1055/a-1352-4313
Continuing Medical Education

Diagnostic Value of Ultrasound in Fatty Liver Disease

Stellenwert der Sonografie bei Fettlebererkrankungen
1   Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
,
Valentin Blank
1   Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
,
Albrecht Böhlig
2   Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
› Author Affiliations

Abstract

Hepatic steatosis is a commonly seen phenomenon in clinical practice and is the result of the accumulation of lipids in the hepatocytes. In most cases steatosis refers to nonalcoholic fatty liver disease (NAFLD), but it also occurs in other diseases of the liver parenchyma of a different etiology and is the result of the dysregulation of metabolic processes. Consequently, inflammatory processes can induce progressive fibrosis. Due to the high prevalence of fatty liver disease, a further increase in metabolic liver cirrhosis with corresponding complications can be expected in the near future. Due to its broad availability, ultrasound is particularly important, especially for the management of NAFLD. In addition to diagnosis and risk stratification, the monitoring of high-risk patients in NAFLD is becoming increasingly clinically important. Multimodality ultrasound includes B-mode and duplex methods, analysis of tissue stiffness (elastography), contrast-enhanced imaging (CEUS), and steatosis quantification. When using ultrasound in fatty liver disease, a standardized approach that takes into account the limitations of the method is essential.

Zusammenfassung

Die Leberzellverfettung ist ein in der klinischen Praxis häufig beobachtetes Phänomen und entsteht durch Einlagerung von Lipiden in die Hepatozyten. Die Steatose definiert in den meisten Fällen die nichtalkoholische Fettlebererkrankung (NAFLD), tritt aber auch bei anderen Leberparenchymerkrankungen unterschiedlicher Ätiologie auf und ist Ausdruck der Dysregulation metabolischer Prozesse. In der Folge können inflammatorische Prozesse eine fortschreitende Fibrose induzieren. Aufgrund der hohen Prävalenz von Fettlebererkrankungen muss in naher Zukunft mit einem weiteren Anstieg der metabolisch bedingten Leberzirrhose mit entsprechenden Folgekomplikationen gerechnet werden. Insbesondere für das Management der NAFLD ist die Ultraschalldiagnostik aufgrund der breiten Verfügbarkeit von besonderer Bedeutung. Neben Diagnosestellung und Risikostratifizierung hat die Überwachung von Risikopatienten bei NAFLD einen zunehmenden klinischen Stellenwert. Die multimodale Ultraschalldiagnostik umfasst dabei neben B-Bild- und Duplexverfahren die Analyse der Gewebesteifigkeit (Elastografie) und wird durch kontrastverstärkte Bildgebung (CEUS) und Steatosequantifizierung komplettiert. Für die Anwendung des Ultraschalls bei Fettlebererkrankungen ist ein standardisiertes Vorgehen unter Berücksichtigung der Methodenlimitationen unerlässlich.



Publication History

Article published online:
23 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Chalasani N, Younossi Z, Lavine JE. et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67: 328-857
  • 2 EASL-EASD-EASO. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388-1402
  • 3 Roeb E, Steffen HM, Bantel H. et al. S2k-Leitlinie nicht alkoholische Fettlebererkrankungen. Z Gastroenterol 2015; 53: 668-723
  • 4 Younossi Z, Anstee QM, Marietti M. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15: 11-20
  • 5 Eslam M, Newsome PN, Sarin SK. et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol 2020; 73: 202-209
  • 6 Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology 2020; 158: 1913-1928
  • 7 Castera L, Friedrich-Rust M, Loomba R. Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019; 156: 1264-1281.e4
  • 8 Kanwal F, Kramer JR, Li L. et al. Effect of Metabolic Traits on the Risk of Cirrhosis and Hepatocellular Cancer in Nonalcoholic Fatty Liver Disease. Hepatology 2020; 71: 808-819
  • 9 Angulo P, Kleiner DE, Dam-Larsen S. et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2015; 149: 389-397.e10
  • 10 Hagström H, Nasr P, Ekstedt M. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol 2017; 67: 1265-1273
  • 11 Khan RS, Newsome PN. NAFLD in 2017: Novel insights into mechanisms of disease progression. Nat Rev Gastroenterol Hepatol 2018; 15: 71-72
  • 12 Taylor RS, Taylor RJ, Bayliss S. et al. Association Between Fibrosis Stage and Outcomes of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2020; 158: 1611-1625.e12
  • 13 Wong VWS. Predicting NASH response with liver fat: Are we back to square one. J Hepatol 2020; 72: 386-388
  • 14 Tannapfel A, Denk H, Dienes HP. et al. Histopathologische Diagnose der nichtalkoholischen und alkoholischen Fettlebererkrankung. Konsensusbasierte Leitlinie der Stufe 2. Pathologe 2010; 31: 225-237
  • 15 Strobel D, Bernatik T, Blank W. et al. Incidence of bleeding in 8172 percutaneous ultrasound-guided intraabdominal diagnostic and therapeutic interventions – results of the prospective multicenter DEGUM interventional ultrasound study (PIUS study). Ultraschall in Med 2015; 36: 122-131
  • 16 Karlas T. Diagnose und Verlaufsbeurteilung von Fettlebererkrankungen. Der Gastroenterologe 2018; 13: 272-283
  • 17 Pfeifer L, Adler W, Zopf S. et al. Acoustic radiation force impulse elastography: comparison and combination with other noninvasive tests for the diagnosis of compensated liver cirrhosis. Eur J Gastroenterol Hepatol 2017; 29: 524-530
  • 18 Dietrich CF, Bamber J, Berzigotti A. et al. EFSUMB-Leitlinien und Empfehlungen zur klinischen Anwendung der Leberelastografie, Update 2017 (Langversion). Ultraschall in Med 2017; 38: e48
  • 19 Dietrich CF, Nolsøe CP, Barr RG. et al. Aktualisierte Leitlinien und Empfehlungen für die gute klinische Praxis für CEUS der Leber. Ultraschall in Med 2020; DOI: 10.1055/a-1177-0530.
  • 20 Dyson JK, McPherson S, Anstee QM. Non-alcoholic fatty liver disease: non-invasive investigation and risk stratification. J Clin Pathol 2013; 66: 1033-1045
  • 21 Petzold G, Lasser J, Rühl J. et al. Diagnostic accuracy of B-Mode ultrasound and Hepatorenal Index for graduation of hepatic steatosis in patients with chronic liver disease. PLoS ONE 2020; 15: e0231044
  • 22 Park CC, Nguyen P, Hernandez C. et al. Magnetic Resonance Elastography vs Transient Elastography in Detection of Fibrosis and Noninvasive Measurement of Steatosis in Patients With Biopsy-Proven Nonalcoholic Fatty Liver Disease. Gastroenterology 2017; 152: 598-607.e2
  • 23 Karlas T, Petroff D, Wiegand J. Collaboration, Not Competition: The Role of Magnetic Resonance, Transient Elastography, and Liver Biopsy in the Diagnosis of Nonalcoholic Fatty Liver Disease. Gastroenterology 2017; 152: 479-481
  • 24 Dietrich CF. Editor Ultraschall-Kurs. Organbezogene Darstellung von Grund-, Aufbau- und Abschlusskurs. Nach den Richtlinien von KBV, DEGUM, ÖGUM und SGUM. Deutscher Ärzte-Verlag; 2012 6th ed..
  • 25 Ferraioli G, Soares Monteiro LB. Ultrasound-based techniques for the diagnosis of liver steatosis. World J Gastroenterol 2019; 25: 6053-6062
  • 26 Karlas T, Petroff D, Sasso M. et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol 2017; 66: 1022-1030
  • 27 Petroff D, Blank V, Newsome PN. et al. Assessment of hepatic steatosis by controlled attenuation parameter using the M and XL probes: an individual patient data meta-analysis. Lancet Gastroenterol Hepatol 2021; S2468-1253(20)30357-5 DOI: 10.1016/S2468-1253(20)30357-5.
  • 28 Ferraioli G, Maiocchi L, Savietto G. et al. Performance of the Attenuation Imaging Technology in the Detection of Liver Steatosis. J Ultrasound Med 2020; DOI: 10.1002/jum.15512.
  • 29 Sugimoto K, Moriyasu F, Oshiro H. et al. The Role of Multiparametric US of the Liver for the Evaluation of Nonalcoholic Steatohepatitis. Radiology 2020; 296: 532-540
  • 30 Webb M, Yeshua H, Zelber-Sagi S. et al. Diagnostic value of a computerized hepatorenal index for sonographic quantification of liver steatosis. Am J Roentgenol 2009; 192: 909-914
  • 31 Sasso M, Beaugrand M, de Ledinghen V. et al. Controlled attenuation parameter (CAP): a novel VCTE™ guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol 2010; 36: 1825-1835
  • 32 Kanayama Y, Kamiyama N, Maruyama K. et al. Real-time ultrasound attenuation imaging of diffuse fatty liver disease. Ultrasound Med Biol 2013; 39: 692-705
  • 33 Sienz M, Ignee A, Dietrich CF. Normwerte in der Abdomensonografie – Leber und Lebergefäße. Z Gastroenterol 2010; 48: 1141-1152
  • 34 Gonçalves Dos Reis Monteiro ML, Ferreira De Almeida E Borges V, Machado De Alcântara T. et al. Liver hemodynamic patterns in nonalcoholic steatosis: Doppler ultrasonography and histological evaluation. Minerva Gastroenterol Dietol 2016; 62: 19-29
  • 35 Tana C, Tana M, Rossi S. et al. Hepatic artery resistive index (HARI) and non-alcoholic fatty liver disease (NAFLD) fibrosis score in NAFLD patients: cut-off suggestive of non-alcoholic steatohepatitis (NASH) evolution. J Ultrasound 2016; 19: 183-189
  • 36 Shili-Masmoudi S, Wong GLH, Hiriart JB. et al. Liver stiffness measurement predicts long-term survival and complications in non-alcoholic fatty liver disease. Liver Int 2020; 40: 581-589
  • 37 de Franchis R. Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension. J Hepatol 2015; 63: 743-752
  • 38 Eddowes PJ, Sasso M, Allison M. et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019; 156: 1717-1730
  • 39 Blank V, Karlas T. Stellenwert der transienten Elastografie zur Risikobewertung bei NAFLD. Z Gastroenterol 2019; 57: 1122-1123
  • 40 Blank V, Petroff D, Beer S. et al Current NAFLD guidelines for risk stratification in diabetic patients have poor diagnostic discrimination. Sci Rep 2020; 10: 18345 . doi:10.1038/s41598-020-75227-x
  • 41 Gerhardt F, Petroff D, Blank V. et al. Biopsy rate and nonalcoholic steatohepatitis (NASH) in patients with nonalcoholic fatty liver disease (NAFLD). Scand J Gastroenterol 2020; 55: 706-711
  • 42 Piscaglia F, Salvatore V, Mulazzani L. et al. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage. Ultraschall in Med 2016; 37: 1-5
  • 43 Liu K, Wong VWS, Lau K. et al. Prognostic Value of Controlled Attenuation Parameter by Transient Elastography. Am J Gastroenterol 2017; 112: 1812-1823
  • 44 Liu H, Fu J, Hong R. et al. Acoustic Radiation Force Impulse Elastography for the Non-Invasive Evaluation of Hepatic Fibrosis in Non-Alcoholic Fatty Liver Disease Patients: A Systematic Review & Meta-Analysis. PLoS ONE 2015; 10: e0127782
  • 45 Xiao G, Zhu S, Xiao X. et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology 2017; 66: 1486-1501
  • 46 Ahmed S, Bughio S, Hassan M. et al. Role of Ultrasound in the Diagnosis of Chronic Kidney Disease and its Correlation with Serum Creatinine Level. Cureus 2019; 11: e4241
  • 47 Görtz RS, Schellhaas B. Sonografie bei Leberzirrhose: von der TIPSS-Funktionsprüfung zur LI-RADS-Klassifikation. Gastroenterologe 2018; 13: 292-297
  • 48 Berzigotti A, Piscaglia F. Ultrasound in portal hypertension – part 1. Ultraschall in Med 2011; 32: 548-568
  • 49 Greten TF, Malek NP, Schmidt S. et al. Diagnostik und Therapie des hepatozellulären Karzinoms. Z Gastroenterol 2013; 51: 1269-1326
  • 50 Dietrich CF, Nolsøe CP, Barr RG. et al Guidelines and Good Clinical Practice Recommendations for Contrast-Enhanced Ultrasound (CEUS) in the Liver-Update 2020 WFUMB in Cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS. Ultrasound Med Biol 2020; 46: 2579-2604 . doi:10.1016/j.ultrasmedbio.2020.04.030
  • 51 Dietrich CF, Potthoff A, Helmberger T. et al. Standardisierte Befundung und Dokumentation der Kontrastmittelsonografie der Leber (CEUS LI-RADS). Z Gastroenterol 2018; 56: 499-506
  • 52 Putz FJ, Verloh N, Erlmeier A. et al. Influence of limited examination conditions on contrast-enhanced sonography for characterising liver lesions. Clinical hemorheology and microcirculation 2019; 71: 267-276
  • 53 Dietrich CF, Lorentzen T, Appelbaum L. et al. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part III – Abdominal Treatment Procedures (Long Version). Ultraschall in Med 2016; 37: E1-E32
  • 54 Sidhu PS, Brabrand K, Cantisani V. et al. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part II. Diagnostic Ultrasound-Guided Interventional Procedures (Long Version). Ultraschall in Med 2015; 36: E15-E35
  • 55 Karlas T, Wiegand J, Petroff D. Benötigen NAFLD-Patienten ein HCC-Screening. Z Gastroenterol 2019; 57: 160-161
  • 56 Younes R, Bugianesi E. Should we undertake surveillance for HCC in patients with NAFLD. J Hepatol 2018; 68: 326-334
  • 57 Wu S, Tu R, Nan R. et al. Impact of variations in fatty liver on sonographic detection of focal hepatic lesions originally identified by CT. Ultrasonography (Seoul, Korea) 2016; 35: 39-46
  • 58 Estes C, Anstee QM, Arias-Loste MT. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol 2018; 69: 896-904
  • 59 Tsuchiya N, Sawada Y, Endo I. et al. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol 2015; 21: 10573-10583
  • 60 Best J, Bechmann LP, Sowa JP. et al. GALAD Score Detects Early Hepatocellular Carcinoma in an International Cohort of Patients With Nonalcoholic Steatohepatitis. Clin GastroenterolnHepatol 2020; 18: 728-735.e4
  • 61 Newsome PN, Sasso M, Deeks JJ. et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol Hepatol 2020; 5: 362-373
  • 62 Lee DH, Cho EJ, Bae JS. et al. Accuracy of Two-Dimensional Shear Wave Elastography and Attenuation Imaging for Evaluation of Patients With Nonalcoholic Steatohepatitis. Clin GastroenterolnHepatol 2020; DOI: 10.1016/j.cgh.2020.05.034.
  • 63 Hagström H, Talbäck M, Andreasson A. et al. Repeated FIB-4 measurements can help identify individuals at risk of severe liver disease. J Hepatol 2020; DOI: 10.1016/j.jhep.2020.06.007.