Synlett 2021; 32(10): 947-954 DOI: 10.1055/a-1371-4391
Asymmetric Inverse-Electron-Demand Diels–Alder Reactions of 2-Pyrones by Lewis Acid Catalysis
Xu-Ge Si
,
Zhi-Mao Zhang
,
Quan Cai∗
We acknowledge generous financial support from the National Natural Science Foundation of China (Grants 21801043 and 22071030).
Abstract
Diels–Alder reactions of 2-pyrones with alkenes can provide highly functionalized [2,2,2]-bicyclic lactones under mild reaction conditions. Synthetic utilizations of these reactions have been well demonstrated in natural-product synthesis. Although several catalytic asymmetric strategies have been realized, current research in this area is still largely underdeveloped. Recent advances in enantioselective inverse-electron-demand Diels–Alder reactions with Lewis acid catalysis are reviewed.
1 Introduction
2 State of the Art of Enantioselective Diels–Alder Reactions of 2-Pyrones by Lewis Acid Catalysis
3 Enantioselective Synthesis of Arene cis -Dihydrodiols by Diels–Alder/Retro-Diels–Alder Reactions of 2-Pyrones
4 Enantioselective Synthesis of cis -Decalin Derivatives by Diels–Alder Reactions of 2-Pyrones
5 Conclusions
Key words
pyrones -
asymmetric catalysis -
Diels–Alder reactions -
Lewis acid catalysis -
natural product synthesis
Publikationsverlauf
Eingereicht: 15. Januar 2021
Angenommen nach Revision: 24. Januar 2021
Accepted Manuscript online: 24. Januar 2021
Artikel online veröffentlicht: 17. Februar 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Afarinkia K,
Vinader V,
Nelson TD,
Posner GH.
Tetrahedron 1992; 48: 9111
1b
Huang G,
Kouklovsky C,
de la Torre A.
Chem. Eur. J. 2021; in press
2a
Cai Q.
Chin. J. Chem. 2019; 37: 946
For selected examples, see:
2b
Watt DS,
Corey EJ.
Tetrahedron Lett. 1972; 13: 4651
2c
Corey EJ,
Watt DS.
J. Am. Chem. Soc. 1973; 95: 2303
2d
Martin SF,
Rüeger H,
Williamson SA,
Grzejszczak S.
J. Am. Chem. Soc. 1987; 109: 6124
2e
Nicolaou KC,
Liu JJ,
Hwang C.-K,
Dai W.-M,
Guy RK.
J. Chem. Soc., Chem. Commun. 1992; 1118
2f
Nicolaou KC,
Yang Z,
Liu JJ,
Ueno H,
Nantermet PG,
Guy RK,
Claiborne CF,
Renaud J,
Couladouros EA,
Paulvannan K,
Sorensen EJ.
Nature 1997; 367: 630
2g
Shim I.-J,
Choi E.-S,
Cho C.-G.
Angew. Chem. Int. Ed. 2007; 46: 2303
2h
Smith MW,
Snyder SA. A.
J. Am. Chem. Soc. 2013; 135: 12964
2i
Cho H.-K,
Lim H.-Y,
Cho C.-G.
Org. Lett. 2013; 15: 5806
2j
Zhao P,
Beaudry CM.
Org. Lett. 2013; 15: 402
2k
Zhao P,
Beaudry CM.
Angew. Chem. Int. Ed. 2014; 53: 10500
2l
Feng M,
Jiang X.
Chem. Commun. 2014; 50: 9690
2m
Gan P,
Smith MW,
Braffman NR,
Snyder SA.
Angew. Chem. Int. Ed. 2016; 55: 3625
2n
Wang N,
Du S,
Li D,
Jiang X.
Org. Lett. 2017; 19: 3167
2o
Wang N,
Liu J,
Wang C,
Bai L,
Jiang X.
Org. Lett. 2018; 20: 292
2p
Lee J.-H,
Cho C.-G.
Org. Lett. 2018; 20: 7312
2q
Yu X,
Xiao L,
Wang Z,
Luo T.
J. Am. Chem. Soc. 2019; 141: 3440
3a
Markό IE,
Evans GR.
Tetrahedron Lett. 1994; 35: 2771
3b
Markό IE,
Evans GR,
Declercq J.-P.
Tetrahedron 1994; 50: 4557
3c
Markό IE,
Evans GR,
Declercq J.-P,
Feneau-Dupont J,
Tinant B.
Bull. Soc. Chim. Belg. 1994; 103: 295
3d
Markό IE,
Evans GR,
Seres P,
Chellé I,
Janousek Z.
Pure Appl. Chem. 1996; 68: 113
3e
Markό IE,
Chellé-Regnaut I,
Leroy B,
Warriner SL.
Tetrahedron Lett. 1997; 38: 4269
3f
Markό IE,
Warriner SL,
Augustyns B.
Org. Lett. 2000; 2: 3123
4a
Posner GH,
Carry J.-C,
Lee JK,
Bull DS,
Dai H.
Tetrahedron Lett. 1994; 35: 1321
4b
Posner GH,
Eydoux F,
Lee JK,
Bull DS.
Tetrahedron Lett. 1994; 35: 7541
4c
Posner GH,
Dai H,
Bull DS,
Lee JK,
Eydoux F,
Ishihara Y,
Welsh W,
Pryor N,
Petr S.
J. Org. Chem. 1996; 61: 671
5a
Wang Y,
Li H,
Wang Y.-Q,
Liu Y,
Foxman BM,
Deng L.
J. Am. Chem. Soc. 2007; 129: 6364
5b
Singh RP,
Bartelson K,
Wang Y,
Su H,
Lu X,
Deng L.
J. Am. Chem. Soc. 2008; 130: 2422
5c
Bartelson KJ,
Singh RP,
Foxman BM,
Deng L.
Chem. Sci. 2011; 2: 1940
6
Soh JY.-T,
Tan C.-H.
J. Am. Chem. Soc. 2009; 131: 6904
7
Shi L.-M,
Dong W.-W,
Tao H.-Y,
Dong X.-Q,
Wang C.-J.
Org. Lett. 2017; 19: 4532
8
Zhou Y,
Zhou Z,
Du W,
Chen Y.
Acta Chim. Sinica (Engl. Ed.) 2018; 76: 382
9
Cole C,
Fuentes L,
Snyder SA.
Chem. Sci. 2020; 11: 2175
10a
Shimizu H,
Okamura H,
Iwagawa T,
Nakatani M.
Tetrahedron 2001; 57: 1903
10b
Suzuki T,
Watanabe S,
Kobayashi S,
Tanino K.
Org. Lett. 2017; 19: 922
11
Burch P,
Binaghi M,
Scherer M,
Wentzel C,
Bossert D,
Eberhardt L,
Neuburger M,
Scheiffele P,
Gademann K.
Chem. Eur. J. 2013; 19: 2589
12a
Gibson DT,
Koch JR,
Kallio RE.
Biochemistry 1968; 7: 2653
12b
Gibson DT,
Koch JR,
Schuld CL,
Kallio RE.
Biochemistry 1968; 7: 3795
12c
Boyd DR,
Sheldrake GN.
Nat. Prod. Rep. 1998; 15: 309
For selected reviews, see:
13a
Duchek J,
Adams DR,
Hudlicky T.
Chem. Rev. 2011; 111: 4223
13b
Reed JW,
Hudlicky T.
Acc. Chem. Res. 2015; 48: 674
13c
Hudlicky T.
ACS Omega 2018; 3: 17326
For selected examples, see:
14a
Ballard DG. H,
Courtis A,
Shirley IM,
Taylor SC.
J. Chem. Soc., Chem. Commun. 1983; 954
14b
Hudlicky T,
Luna H,
Barbieri G,
Kwart LD.
J. Am. Chem. Soc. 1988; 110: 4735
14c
Sullivan B,
Carrera I,
Drouin M,
Hudlicky T.
Angew. Chem. Int. Ed. 2009; 48: 4229
14d
Palframan MJ,
Kociok-Köhn G,
Lewis SE.
Chem. Eur. J. 2012; 18: 4766
14e
Varghese V,
Hudlicky T.
Angew. Chem. Int. Ed. 2014; 53: 4355
14f
Baidilov D,
Rycek L,
Trant JF,
Froese J,
Murphy B,
Hudlicky T.
Angew. Chem. Int. Ed. 2018; 57: 10994
14g
Makarova M,
Endoma-Arias MA,
Dela Paz H,
Simionescu R,
Hudlicky T.
J. Am. Chem. Soc. 2019; 141: 10883
15a
Southgate EH,
Pospech J,
Fu J,
Holycross DR,
Sarlah D.
Nat. Chem. 2016; 8: 922
15b
Southgate EH,
Holycross DR,
Sarlah D.
Angew. Chem. Int. Ed. 2017; 56: 15049
15c
Hernandez LW,
Pospech J,
Klöckner U,
Bingham TW,
Sarlah D.
J. Am. Chem. Soc. 2017; 139: 15656
15d
Okumura M,
Sarlah D.
Synlett 2018; 29: 845
15e
Bingham TW,
Hernadez LW,
Olson DG,
Svec RL,
Hergenrother PJ,
Sarlah D.
J. Am. Chem. Soc. 2019; 141: 657
15f
Sun F,
Metz P.
Synlett 2013; 24: 457
16
Liang X.-W,
Zhao Y,
Si X.-G,
Xu M.-M,
Tan J.-H,
Zhang Z.-M,
Zheng C.-G,
Zheng C,
Cai Q.
Angew. Chem. Int. Ed. 2019; 58: 14562
17a
Lim C,
Baek DJ,
Kim D,
Youn SW,
Kim S.
Org. Lett. 2009; 11: 2583
17b
Mondal S,
Sureshan KM.
J. Org. Chem. 2016; 81: 11635
For selected reviews, see:
18a
Li G,
Kusari S,
Spiteller M.
Nat. Prod. Rep. 2014; 31: 1175
18b
Schnermann MJ,
Shenvi RA.
Nat. Prod. Rep. 2015; 32: 543
19a
Singh V,
Iyer SR,
Pal S.
Tetrahedron 2005; 61: 9197
19b
Dhambri S,
Mohammad S,
Nguyen Van Buu O,
Galvani G,
Meyer Y,
Lannou M.-I,
Sorin G,
Ardisson J.
Nat. Prod. Rep. 2015; 32: 841
20
Si X.-G,
Zhang Z.-M,
Zheng C.-G,
Li Z.-T,
Cai Q.
Angew. Chem. Int. Ed. 2020; 59: 18412
For selected examples, see:
21a
Devine PN,
Oh T.
J. Org. Chem. 1991; 56: 1955
21b
Pyne SG,
Safaei GJ,
Hockless DC. R,
Skelton BW,
Sobolev AN,
White AH.
Tetrahedron 1994; 50: 941
21c
Earley WG,
Jacobsen JE,
Madin A,
Meier GP,
O’Donnell CJ,
Oh T,
Old DW,
Overman LE,
Sharp MJ.
J. Am. Chem. Soc. 2005; 127: 18046
21d
Jung ME,
Roberts CA,
Perez F,
Pham HV,
Zou L,
Houk KN.
Org. Lett. 2016; 18: 32
22a
Chan WR,
Taylor DR,
Willis CR.
Chem. Commun. (London) 1967; 191
22b
Chan WR,
Taylor DR,
Willis CR.
J. Chem. Soc. C 1968; 2781
22c
Blount JF,
Chan WR,
Clardy J,
Manchand PS,
Pezzanite JO.
J. Chem. Res., Synop. 1984; 114
22d
Itokawa H,
Ichihara Y,
Kojima H,
Watanabe K,
Takeya K.
Phytochemistry 1989; 28: 1667
22e
Kubo I,
Asaka Y,
Shibata K.
Phytochemistry 1991; 30: 2545
22f
Maciel MA. M,
Pinto AC,
Brabo SN,
Da Silva MN.
Phytochemistry 1998; 49: 823
22g
Grynberg NF,
Echevarria A,
Lima JE,
Pamplona SS,
Pinto AC,
Maciel MA. M.
Planta Med. 1999; 65: 687
22h
Puebla P,
López JL,
Guerrero M,
Carrón R,
Martín ML,
San Román L,
San Feliciano A.
Phytochemistry 2003; 62: 551
For synthetic efforts towards 19-norclerodane diterpenoids, see:
23a
Liu H.-J,
Zhu J.-L,
Chen I.-C,
Jankowska R,
Han Y,
Shia K.-S.
Angew. Chem. Int. Ed. 2003; 42: 1851
23b
Chen I.-C,
Wu Y.-K,
Liu H.-J,
Zhu J.-L.
Chem. Commun. 2008; 4720
23c
Pouwer RH,
Schill H,
Williams CM,
Bernhardt PV.
Eur. J. Org. Chem. 2007; 4699
23d
Merritt AT,
Pouwer RH,
Williams DJ,
Williams CM,
Ley SV.
Org. Biomol. Chem. 2011; 9: 4745
23e
Mirzayans PM,
Pouwer RH,
Williams CM,
Bernhardt PV.
Eur. J. Org. Chem. 2012; 1633
23f
Liu X,
Lee C.-S.
Org. Lett. 2012; 14: 2886
24
Carlos AM. M,
Contreira ME,
Martins BS,
Immich MF,
Moro AV,
Lüdtke DS.
Tetrahedron 2015; 71: 1202