Subscribe to RSS
DOI: 10.1055/a-1422-9632
Palladium-Catalyzed sp3 C–H Benzoxylation of Alanine Derivatives Using Aldehydes under Ambient Conditions
This work was supported financially by a Grant-in-Aid for Scientific Research (C) (No. 18K05114) from JSPS and Asahi Glass Research Proposal Grant (2019) for KSK.
Abstract
The Pd(II)-catalyzed sp3 C–H bond benzoxylation of N-phthaloylalanine derivatives possessing an 8-aminoquinolyl group as a directing group with aldehydes under ambient conditions is reported. When a solution of an alanine derivative and an aldehyde in a toluene/water co-solvent was reacted in the presence of palladium catalyst and tert-butyl hydroperoxide at room temperature, a benzoxylated product was formed in up to 68% yield. The protecting group of the obtained benzoxylated product was smoothly removed to afford a free amide in high yield.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1422-9632.
- Supporting Information
Publication History
Received: 17 January 2021
Accepted after revision: 10 March 2021
Accepted Manuscript online:
10 March 2021
Article published online:
19 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. VCH; New York: 1989. 966; and references cited therein
- 1b Otera J. Esterifications: Methods, Reactions and Applications. Wiley; New York: 2003
- 2a Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
- 2b Li S.-S, Qin L, Dong L. Org. Biomol. Chem. 2016; 14: 4554
- 2c Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 2d Gao P, Gu Y.-R, Duan X.-H. Synthesis 2017; 49: 3407
- 2e Wang C.-S, Dixneuf PH, Soule J.-F. Chem. Rev. 2018; 118: 7532
- 2f Chen Z, Rong MY, Nie J, Zhu X.-F, Shi B.-F, Ma J.-A. Chem. Soc. Rev. 2019; 48: 4921
- 2g Almasalma AA, Mejia E. Synthesis 2020; 52: 2613
- 2h Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
- 3a Luo F, Pan C, Chen J. Synlett 2012; 23: 357
- 3b Liu B, Hu F, Shi B.-F. ACS Catal. 2015; 5: 1863
- 3c Maiji G, Rout SK, Rajamanickam S, Guin S, Patel BK. Org. Biomol. Chem. 2016; 14: 8178
- 4a Yoneyama T, Crabtree RH. J. Mol. Catal. A 1996; 108: 35
- 4b Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
- 4c Giri R, Liang J, Lei J.-G, Li J.-J, Wang D.-H, Chen X, Naggar IC, Foxman BM, Yu J.-Q. Angew. Chem. Int. Ed. 2005; 44: 7420
- 4d Kalyani D, Sanford MS. Org. Lett. 2005; 7: 4149
- 4e Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
- 4f Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
- 4g Zhang J, Khaskin E, Anderson NP, Zavalij PY, Vedernikov AN. Chem. Commun. 2008; 3625
- 4h Stowers KJ, Sanford MS. Org. Lett. 2009; 11: 4584
- 4i Gou F.-R, Wang X.-C, Huo P.-H, Bi H.-P, Guan Z.-H, Liang Y.-M. Org. Lett. 2009; 11: 5726
- 4j Vickers CJ, Mei T.-S, Yu J.-Q. Org. Lett. 2010; 12: 2511
- 4k Pradel A, Toullec PY, Michelet V. Org. Lett. 2011; 13: 6086
- 4l Rit RK, Yadav MR, Sahoo AK. Org. Lett. 2012; 14: 3724
- 4m Wang M, Yang Y, Fan Z, Cheng Z, Zhu W, Zhang A. Chem. Commun. 2015; 51: 3219
- 4n Okada T, Nobushige K, Satoh T, Miura M. Org. Lett. 2016; 18: 1150
- 4o Garad DN, Mhaske SB. J. Org. Chem. 2017; 82: 10470
- 5a Dick AR, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2005; 127: 12790
- 5b Racowski JM, Dick AR, Sanford MS. J. Am. Chem. Soc. 2009; 131: 10974
- 5c Sun C.-L, Liu J, Wang Y, Zhou X, Li BJ, Shi ZJ. Synlett 2011; 883
- 5d Hu C.-J, Zhang X.-H, Ding Q.-P, Lv T, Ge S.-P, Zhong P. Tetrahedron Lett. 2012; 53: 2465
- 5e Sit W.-N, Chan C.-W, Yu W.-Y. Molecules 2013; 18: 4403
- 5f Zhang Q, Wang Y, Yang T, Li L, Li D. Tetrahedron Lett. 2015; 56: 6136
- 5g Wu J, Hoang KL. M, Leow ML, Liu X.-W. Org. Chem. Front. 2015; 2: 502
- 5h Li L, Wang Y, Yang T, Zhang Q, Li D. Tetrahedron Lett. 2016; 57: 5859
- 6a Ye Z, Wang W, Luo F, Zhang S, Cheng J. Org. Lett. 2009; 11: 3974
- 6b Jin C, Wang G, Yang X, Zu W, Yang Y. Tetrahedron Lett. 2018; 59: 2042
- 7a Padala K, Jeganmohan M. Chem. Commun. 2013; 49: 9651
- 7b Padala K, Jeganmohan M. Chem. Eur. J. 2014; 20: 4092
- 7c Raghuvanshi K, Rauch K, Ackermann L. Chem. Eur. J. 2015; 21: 1790
- 7d More NY, Padala K, Jeganmohan M. J. Org. Chem. 2017; 82: 12691
- 7e Raghuvanshi K, Zell D, Ackermann L. Org. Lett. 2017; 19: 1278
- 8a Wang W, Luo F, Zhang S, Cheng J. J. Org. Chem. 2010; 75: 2415
- 8b Wang W, Pan C, Chen F, Cheng J. Chem. Commun. 2011; 47: 3978
- 8c Bian Y.-J, Xiang C.-B, Chen Z.-M, Huang Z.-Z. Synlett 2011; 2407
- 8d Li L, Yu P, Cheng J, Chen F, Pan C. Chem. Lett. 2012; 41: 600
- 8e Khemnar AB, Bhanage BM. Org. Biomol. Chem. 2014; 12: 9631
- 8f Behera A, Rout SK, Guin S, Patel NK. RSC Adv. 2014; 4: 55115
- 8g Rout SK, Guin S, Gogoi A, Maiji G, Patel BK. Org. Lett. 2014; 16: 1614
- 8h Khatum N, Banerjee A, Santra SK, Ali W, Patel BK. RSC Adv. 2015; 5: 36461
- 9a Zhang S, Luo F, Wang W, Jia X, Hu M, Cheng J. Tetrahedron Lett. 2010; 51: 3317
- 9b Rout SK, Guin S, Ali W, Gogoi A, Patel BK. Org. Lett. 2014; 16: 3086
- 9c Santra SK, Banerjee A, Rajamanickam S, Khatun N, Patel BK. Chem. Commun. 2016; 52: 4501
- 10 For direct sp3 C–H benzoxylations using metal-free conditions, see: Guo S, Yu J.-T, Dai Q, Yang H, Cheng J. Chem. Commun. 2014; 50: 6240
- 11a Corbet M, De Campo F. Angew. Chem. Int. Ed. 2013; 52: 9896
- 11b Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 12a Ref. 4e
- 12b Chen K, Zhang S.-Q, Jiang H.-Z, Xu J.-W, Shi B.-F. Chem. Eur. J. 2015; 21: 3264
- 12c Rao W.-H, Zhan B.-B, Chen K, Ling P.-X, Zhang Z.-Z, Shi B.-F. Org. Lett. 2015; 17: 3552
- 12d Yang X, Sun Y, Sun T.-Y, Rao Y. Chem. Commun. 2016; 52: 6423
- 12e Liu Y.-J, Liu Y.-H, Zhang Z.-Z, Yan S.-Y, Chen K, Shi B.-F. Angew. Chem. Int. Ed. 2016; 55: 13859
- 12f Pan J.-L, Li Q.-Z, Zhang T.-Y, Hou S.-H, Kang J.-C, Zhang S.-Y. Chem. Commun. 2016; 52: 13151
- 12g Liao G, Yin X.-S, Chen K, Zhang Q, Zhang S.-Q, Shi B.-F. Nat. Commun. 2016; 7: 12901
- 12h Zhou Z.-X, Rao W.-H, Zeng M.-H, Liu Y.-J. Chem. Commun. 2018; 54: 14139
- 12i Liu Y, Wang Y, Dai W, Huang W, Li Y, Liu H. Angew. Chem. Int. Ed. 2020; 59: 3491
- 13a Tran LD, Daugulis O. Angew. Chem. Int. Ed. 2012; 51: 5188
- 13b Zhang Q, Chen K, Rao W, Zhang Y, Chen F.-J, Shi B.-F. Angew. Chem. Int. Ed. 2013; 52: 13588
- 13c Zhang S.-Y, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2013; 135: 12135
- 13d Chen K, Hu F, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 3906
- 13e Chen K, Shi B.-F. Angew. Chem. Int. Ed. 2014; 53: 11950
- 13f Wang B, Nack WA, He G, Zhang S.-Y, Chen G. Chem. Sci. 2014; 5: 3952
- 13g Chen K, Zhang S.-Q, Xu J.-W, Hu F, Shi B.-F. Chem. Commun. 2014; 50: 13924
- 13h Wang B, Lu C, Zhang S.-Y, He G, Nack WA, Chen G. Org. Lett. 2014; 16: 6260
- 13i Wu X, Zhao Y, Ge H. Chem. Sci. 2015; 6: 5978
- 13j Wang B, Wu X, Jiao R, Zhang S.-Y, Nack WA, He G, Chen G. Org. Chem. Front. 2015; 2: 1318
- 13k Zhang X, He G, Chen G. Org. Biomol. Chem. 2016; 14: 5511
- 13l Nack WA, Wang B, Wu X, Jiao R, He G, Chen G. Org. Chem. Front. 2016; 3: 561
- 13m Ling P.-X, Fang S.-L, Yin X.-S, Zhang Q, Chen K, Shi B.-F. Chem. Commun. 2017; 53: 6351
- 13n Yang Q, Yang S.-D. ACS Catal. 2017; 7: 5220
- 14a Qu S, Chen Y, Wang X, Chen S, Xu Z, Ye T. Chem. Commun. 2015; 51: 2510
- 14b Fang S.-L, Jiang M.-X, Zhang S, Wu Y.-J, Shi B.-F. Org. Lett. 2019; 21: 4609
- 15a Tahara Y, Michino M, Ito M, Kanyiva KS, Shibata T. Chem. Commun. 2015; 51: 16660
- 15b Tahara Y, Ito M, Kanyiva KS, Shibata T. Chem. Eur. J. 2015; 21: 11340
- 15c Shibata T, Michino M, Kurita H, Tahara Y, Kanyiva KS. Chem. Eur. J. 2017; 23: 88
- 15d Shibata T, Baba T, Takano H, Kanyiva KS. Adv. Synth. Catal. 2017; 359: 1849
- 15e Kanyiva KS, Horiuchi M, Shibata T. Eur. J. Org. Chem. 2018; 1067
- 15f Shibata T, Uno N, Sasaki T, Takano H, Sato T, Kanyiva KS. J. Org. Chem. 2018; 83: 3426
- 15g Shibata T, Kurita H, Onoda S, Kanyiva KS. Asian J. Org. Chem. 2018; 7: 1411
- 15h Kanyiva KS, Tane M, Shibata T. J. Org. Chem. 2019; 38: 12773
- 16a Ref. 4l
- 16b Ref. 12c
- 16c Ref. 13f
- 16d Ref. 13h
- 16e Ref. 13j
- 16f Ref. 13l
- 16g Czyz ML, Lupton DW, Polyzos A. Chem. Eur. J. 2017; 23: 14450
- 17a Ref. 12d
- 17b Aihara Y, Tobisu M, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 15509
- 17c Kubo T, Aihara Y, Chatani N. Chem. Lett. 2015; 44: 1365
- 17d Yokota A, Chatani N. Chem. Lett. 2015; 44: 902
- 17e Tong H.-R, Zheng S, Li X, Deng Z, Wang H, He G, Peng Q, Chen G. ACS Catal. 2018; 8: 11502
- 17f Tong H.-R, Zheng W, Lv X, He G, Liu P, Chen G. ACS Catal. 2020; 10: 114
- 18 When the substrates prepared from phenylalanine, leucine, and 2-methylalanine were used, no reaction proceeded under the reaction conditions. We will further examine the reaction conditions as a future work.
- 19 For example of formation of tert-butoxy radical at room temperature, see: Wu Y, Li B, Mao F, Li X, Kwong FY. Org. Lett. 2011; 13: 3258
- 20 Zhang Z, Li X, Song M, Wan Y, Zheng D, Zhang G, Chen G. J. Org. Chem. 2019; 84: 12792
- 21 Sugimura N, Furuya A, Yatsu T, Iagarashi Y, Aoyama R, Izutani C, Yamamoto Y, Shibue T. Eur. J. Mass Spectrom. 2017; 23: 4
- 22 Czyz M.-L, Weragoda G.-K, Horngren T.-H, Connell T.-U, Gomez D, O’Hair RA. J, Polyzos A. Chem. Sci. 2020; 11: 2455
- 23 Charvet R, Yamamoto Y, Sasaki T, Kim J, Kato K, Takata M, Saeki A, Seki S, Aida T. J. Am. Chem. Soc. 2012; 134: 2524
- 24 Heitel P, Gellrich L, Kalinowsky L, Heering J, Kaiser A, Ohrndorf J, Proschak E, Merk D. ACS Med. Chem. Lett. 2019; 10: 203
- 25 CCDC 2048216 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
For selected recent reviews on C–H bond functionalizations, see:
For reviews on synthesis of esters via C–H bond activation, see:
For examples of C–H acetoxylation reactions using transition-metal catalysts, see:
Pd:
Rh:
Ru:
Cu:
For sp3 C–H benzoxylations using transition-metal catalysts, see:
For reviews on use of 8-quinolylamino directing group, see:
For examples of carbon–heteroatom formations, see:
For examples of C–C bond formations, see:
For examples of our C–H functionalization reactions, see:
For Pd-catalyzed sp3 C–H activation at room temperature, see:
Effect of 5-FG on DG; for examples, see: