Synthesis 2021; 53(17): 3085-3093
DOI: 10.1055/a-1422-9632
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Palladium-Catalyzed sp3 C–H Benzoxylation of Alanine Derivatives Using Aldehydes under Ambient Conditions

Kyalo Stephen Kanyiva
a   Global Center of Science and Engineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
,
King Hung Nigel Tang
b   Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
,
Jiarui Wang
b   Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
,
b   Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
› Author Affiliations
This work was supported financially by a Grant-in-Aid for Scientific Research (C) (No. 18K05114) from JSPS and Asahi Glass Research Proposal Grant (2019) for KSK.


Abstract

The Pd(II)-catalyzed sp3 C–H bond benzoxylation of N-phthaloylalanine derivatives possessing an 8-aminoquinolyl group as a directing group with aldehydes under ambient conditions is reported. When a solution of an alanine derivative and an aldehyde in a toluene/water co-solvent was reacted in the presence of palladium catalyst and tert-butyl hydroperoxide at room temperature, a benzoxylated product was formed in up to 68% yield. The protecting group of the obtained benzoxylated product was smoothly removed to afford a free amide in high yield.

Supporting Information



Publication History

Received: 17 January 2021

Accepted after revision: 10 March 2021

Accepted Manuscript online:
10 March 2021

Article published online:
19 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. VCH; New York: 1989. 966; and references cited therein
    • 1b Otera J. Esterifications: Methods, Reactions and Applications. Wiley; New York: 2003

      For selected recent reviews on C–H bond functionalizations, see:
    • 2a Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
    • 2b Li S.-S, Qin L, Dong L. Org. Biomol. Chem. 2016; 14: 4554
    • 2c Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
    • 2d Gao P, Gu Y.-R, Duan X.-H. Synthesis 2017; 49: 3407
    • 2e Wang C.-S, Dixneuf PH, Soule J.-F. Chem. Rev. 2018; 118: 7532
    • 2f Chen Z, Rong MY, Nie J, Zhu X.-F, Shi B.-F, Ma J.-A. Chem. Soc. Rev. 2019; 48: 4921
    • 2g Almasalma AA, Mejia E. Synthesis 2020; 52: 2613
    • 2h Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788

      For reviews on synthesis of esters via C–H bond activation, see:
    • 3a Luo F, Pan C, Chen J. Synlett 2012; 23: 357
    • 3b Liu B, Hu F, Shi B.-F. ACS Catal. 2015; 5: 1863
    • 3c Maiji G, Rout SK, Rajamanickam S, Guin S, Patel BK. Org. Biomol. Chem. 2016; 14: 8178

      For examples of C–H acetoxylation reactions using transition-metal catalysts, see:
    • 4a Yoneyama T, Crabtree RH. J. Mol. Catal. A 1996; 108: 35
    • 4b Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
    • 4c Giri R, Liang J, Lei J.-G, Li J.-J, Wang D.-H, Chen X, Naggar IC, Foxman BM, Yu J.-Q. Angew. Chem. Int. Ed. 2005; 44: 7420
    • 4d Kalyani D, Sanford MS. Org. Lett. 2005; 7: 4149
    • 4e Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006;  8: 3391
    • 4f Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 4g Zhang J, Khaskin E, Anderson NP, Zavalij PY, Vedernikov AN. Chem. Commun. 2008; 3625
    • 4h Stowers KJ, Sanford MS. Org. Lett. 2009; 11: 4584
    • 4i Gou F.-R, Wang X.-C, Huo P.-H, Bi H.-P, Guan Z.-H, Liang Y.-M. Org. Lett. 2009; 11: 5726
    • 4j Vickers CJ, Mei T.-S, Yu J.-Q. Org. Lett. 2010; 12: 2511
    • 4k Pradel A, Toullec PY, Michelet V. Org. Lett. 2011; 13: 6086
    • 4l Rit RK, Yadav MR, Sahoo AK. Org. Lett. 2012; 14: 3724
    • 4m Wang M, Yang Y, Fan Z, Cheng Z, Zhu W, Zhang A. Chem. Commun. 2015; 51: 3219
    • 4n Okada T, Nobushige K, Satoh T, Miura M. Org. Lett. 2016; 18: 1150
    • 4o Garad DN, Mhaske SB. J. Org. Chem. 2017; 82: 10470

      Pd:
    • 5a Dick AR, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2005; 127: 12790
    • 5b Racowski JM, Dick AR, Sanford MS. J. Am. Chem. Soc. 2009; 131: 10974
    • 5c Sun C.-L, Liu J, Wang Y, Zhou X, Li BJ, Shi ZJ. Synlett 2011; 883
    • 5d Hu C.-J, Zhang X.-H, Ding Q.-P, Lv T, Ge S.-P, Zhong P. Tetrahedron Lett. 2012; 53: 2465
    • 5e Sit W.-N, Chan C.-W, Yu W.-Y. Molecules 2013; 18: 4403
    • 5f Zhang Q, Wang Y, Yang T, Li L, Li D. Tetrahedron Lett. 2015; 56: 6136
    • 5g Wu J, Hoang KL. M, Leow ML, Liu X.-W. Org. Chem. Front. 2015; 2: 502
    • 5h Li L, Wang Y, Yang T, Zhang Q, Li D. Tetrahedron Lett. 2016; 57: 5859

      Rh:
    • 6a Ye Z, Wang W, Luo F, Zhang S, Cheng J. Org. Lett. 2009; 11: 3974
    • 6b Jin C, Wang G, Yang X, Zu W, Yang Y. Tetrahedron Lett. 2018; 59: 2042

      Ru:
    • 7a Padala K, Jeganmohan M. Chem. Commun. 2013; 49: 9651
    • 7b Padala K, Jeganmohan M. Chem. Eur. J. 2014; 20: 4092
    • 7c Raghuvanshi K, Rauch K, Ackermann L. Chem. Eur. J. 2015; 21: 1790
    • 7d More NY, Padala K, Jeganmohan M. J. Org. Chem. 2017; 82: 12691
    • 7e Raghuvanshi K, Zell D, Ackermann L. Org. Lett. 2017; 19: 1278

      Cu:
    • 8a Wang W, Luo F, Zhang S, Cheng J. J. Org. Chem. 2010; 75: 2415
    • 8b Wang W, Pan C, Chen F, Cheng J. Chem. Commun. 2011; 47: 3978
    • 8c Bian Y.-J, Xiang C.-B, Chen Z.-M, Huang Z.-Z. Synlett 2011; 2407
    • 8d Li L, Yu P, Cheng J, Chen F, Pan C. Chem. Lett. 2012; 41: 600
    • 8e Khemnar AB, Bhanage BM. Org. Biomol. Chem. 2014; 12: 9631
    • 8f Behera A, Rout SK, Guin S, Patel NK. RSC Adv. 2014; 4: 55115
    • 8g Rout SK, Guin S, Gogoi A, Maiji G, Patel BK. Org. Lett. 2014; 16: 1614
    • 8h Khatum N, Banerjee A, Santra SK, Ali W, Patel BK. RSC Adv. 2015; 5: 36461

      For sp3 C–H benzoxylations using transition-metal catalysts, see:
    • 9a Zhang S, Luo F, Wang W, Jia X, Hu M, Cheng J. Tetrahedron Lett. 2010; 51: 3317
    • 9b Rout SK, Guin S, Ali W, Gogoi A, Patel BK. Org. Lett. 2014; 16: 3086
    • 9c Santra SK, Banerjee A, Rajamanickam S, Khatun N, Patel BK. Chem. Commun. 2016; 52: 4501
  • 10 For direct sp3 C–H benzoxylations using metal-free conditions, see: Guo S, Yu J.-T, Dai Q, Yang H, Cheng J. Chem. Commun. 2014; 50: 6240

    • For reviews on use of 8-quinolylamino directing group, see:
    • 11a Corbet M, De Campo F. Angew. Chem. Int. Ed. 2013;  52:  9896
    • 11b Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726

      For examples of carbon–heteroatom formations, see:
    • 12a Ref. 4e
    • 12b Chen K, Zhang S.-Q, Jiang H.-Z, Xu J.-W, Shi B.-F. Chem. Eur. J. 2015; 21: 3264
    • 12c Rao W.-H, Zhan B.-B, Chen K, Ling P.-X, Zhang Z.-Z, Shi B.-F. Org. Lett. 2015; 17: 3552
    • 12d Yang X, Sun Y, Sun T.-Y, Rao Y. Chem. Commun. 2016; 52: 6423
    • 12e Liu Y.-J, Liu Y.-H, Zhang Z.-Z, Yan S.-Y, Chen K, Shi B.-F. Angew. Chem. Int. Ed. 2016; 55: 13859
    • 12f Pan J.-L, Li Q.-Z, Zhang T.-Y, Hou S.-H, Kang J.-C, Zhang S.-Y. Chem. Commun. 2016; 52: 13151
    • 12g Liao G, Yin X.-S, Chen K, Zhang Q, Zhang S.-Q, Shi B.-F. Nat. Commun. 2016; 7: 12901
    • 12h Zhou Z.-X, Rao W.-H, Zeng M.-H, Liu Y.-J. Chem. Commun. 2018; 54: 14139
    • 12i Liu Y, Wang Y, Dai W, Huang W, Li Y, Liu H. Angew. Chem. Int. Ed. 2020; 59: 3491

      For examples of C–C bond formations, see:
    • 13a Tran LD, Daugulis O. Angew. Chem. Int. Ed. 2012; 51: 5188
    • 13b Zhang Q, Chen K, Rao W, Zhang Y, Chen F.-J, Shi B.-F. Angew. Chem. Int. Ed. 2013; 52: 13588
    • 13c Zhang S.-Y, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2013; 135: 12135
    • 13d Chen K, Hu F, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 3906
    • 13e Chen K, Shi B.-F. Angew. Chem. Int. Ed. 2014; 53: 11950
    • 13f Wang B, Nack WA, He G, Zhang S.-Y, Chen G. Chem. Sci. 2014; 5: 3952
    • 13g Chen K, Zhang S.-Q, Xu J.-W, Hu F, Shi B.-F. Chem. Commun. 2014; 50: 13924
    • 13h Wang B, Lu C, Zhang S.-Y, He G, Nack WA, Chen G. Org. Lett. 2014; 16: 6260
    • 13i Wu X, Zhao Y, Ge H. Chem. Sci. 2015; 6: 5978
    • 13j Wang B, Wu X, Jiao R, Zhang S.-Y, Nack WA, He G, Chen G. Org. Chem. Front. 2015; 2: 1318
    • 13k Zhang X, He G, Chen G. Org. Biomol. Chem. 2016; 14: 5511
    • 13l Nack WA, Wang B, Wu X, Jiao R, He G, Chen G. Org. Chem. Front. 2016; 3: 561
    • 13m Ling P.-X, Fang S.-L, Yin X.-S, Zhang Q, Chen K, Shi B.-F. Chem. Commun. 2017; 53: 6351
    • 13n Yang Q, Yang S.-D. ACS Catal. 2017; 7: 5220
    • 14a Qu S, Chen Y, Wang X, Chen S, Xu Z, Ye T. Chem. Commun. 2015; 51: 2510
    • 14b Fang S.-L, Jiang M.-X, Zhang S, Wu Y.-J, Shi B.-F. Org. Lett. 2019; 21: 4609

      For examples of our C–H functionalization reactions, see:
    • 15a Tahara Y, Michino M, Ito M, Kanyiva KS, Shibata T. Chem. Commun. 2015; 51: 16660
    • 15b Tahara Y, Ito M, Kanyiva KS, Shibata T. Chem. Eur. J. 2015; 21: 11340
    • 15c Shibata T, Michino M, Kurita H, Tahara Y, Kanyiva KS. Chem. Eur. J. 2017; 23: 88
    • 15d Shibata T, Baba T, Takano H, Kanyiva KS. Adv. Synth. Catal. 2017; 359: 1849
    • 15e Kanyiva KS, Horiuchi M, Shibata T. Eur. J. Org. Chem. 2018; 1067
    • 15f Shibata T, Uno N, Sasaki T, Takano H, Sato T, Kanyiva KS. J. Org. Chem. 2018; 83: 3426
    • 15g Shibata T, Kurita H, Onoda S, Kanyiva KS. Asian J. Org. Chem. 2018; 7: 1411
    • 15h Kanyiva KS, Tane M, Shibata T. J. Org. Chem. 2019; 38: 12773

      For Pd-catalyzed sp3 C–H activation at room temperature, see:
    • 16a Ref. 4l
    • 16b Ref. 12c
    • 16c Ref. 13f
    • 16d Ref. 13h
    • 16e Ref. 13j
    • 16f Ref. 13l
    • 16g Czyz ML, Lupton DW, Polyzos A. Chem. Eur. J. 2017; 23: 14450

      Effect of 5-FG on DG; for examples, see:
    • 17a Ref. 12d
    • 17b Aihara Y, Tobisu M, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 15509
    • 17c Kubo T, Aihara Y, Chatani N. Chem. Lett. 2015; 44: 1365
    • 17d Yokota A, Chatani N. Chem. Lett. 2015; 44: 902
    • 17e Tong H.-R, Zheng S, Li X, Deng Z, Wang H, He G, Peng Q, Chen G. ACS Catal. 2018; 8: 11502
    • 17f Tong H.-R, Zheng W, Lv X, He G, Liu P, Chen G. ACS Catal. 2020; 10: 114
  • 18 When the substrates prepared from phenylalanine, leucine, and 2-methylalanine were used, no reaction proceeded under the reaction conditions. We will further examine the reaction conditions as a future work.
  • 19 For example of formation of tert-butoxy radical at room temperature, see: Wu Y, Li B, Mao F, Li X, Kwong FY. Org. Lett. 2011; 13: 3258
  • 20 Zhang Z, Li X, Song M, Wan Y, Zheng D, Zhang G, Chen G. J. Org. Chem. 2019; 84: 12792
  • 21 Sugimura N, Furuya A, Yatsu T, Iagarashi Y, Aoyama R, Izutani C, Yamamoto Y, Shibue T. Eur. J. Mass Spectrom. 2017; 23: 4
  • 22 Czyz M.-L, Weragoda G.-K, Horngren T.-H, Connell T.-U, Gomez D, O’Hair RA. J, Polyzos A. Chem. Sci. 2020; 11: 2455
  • 23 Charvet R, Yamamoto Y, Sasaki T, Kim J, Kato K, Takata M, Saeki A, Seki S, Aida T. J. Am. Chem. Soc. 2012; 134: 2524
  • 24 Heitel P, Gellrich L, Kalinowsky L, Heering J, Kaiser A, Ohrndorf J, Proschak E, Merk D. ACS Med. Chem. Lett. 2019; 10: 203
  • 25 CCDC 2048216 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.