Neuroradiologie Scan 2022; 12(02): 131-156
DOI: 10.1055/a-1462-2305
CME-Fortbildung

Bedeutung der multimodalen Bildgebung bei Demenz

Multimodality imaging of dementia: clinical importance and role of integrated anatomic and molecular imaging
Kunal P. Patel
,
David T. Wymer
,
Vinay K. Bhatia
,
Ranjan Duara
,
Chetan D. Rajadhyaksha

Sowohl die anatomische strukturelle Bildgebung als auch die physiologische molekulare Bildgebung können heutzutage neurodegenerative Prozesse relativ früh und mit großer Genauigkeit identifizieren. Der vorliegende Beitrag stellt die verschiedenen verfügbaren Bildgebungsmodalitäten vor und erläutert ihre Bedeutung für die multidisziplinäre Behandlung dieser Erkrankungen.

Abstract

Neurodegenerative diseases are a devastating group of disorders that can be difficult to accurately diagnose. Although these disorders are difficult to manage owing to relatively limited treatment options, an early and correct diagnosis can help with managing symptoms and coping with the later stages of these disease processes. Both anatomic structural imaging and physiologic molecular imaging have evolved to a state in which these neurodegenerative processes can be identified relatively early with high accuracy. To determine the underlying disease, the radiologist should understand the different distributions and pathophysiologic processes involved. High-spatial-resolution MRI allows detection of subtle morphologic changes, as well as potential complications and alternate diagnoses, while molecular imaging allows visualization of altered function or abnormal increased or decreased concentration of disease-specific markers. These methodologies are complementary. Appropriate workup and interpretation of diagnostic studies require an integrated, multimodality, multidisciplinary approach. This article reviews the protocols and findings at MRI and nuclear medicine imaging, including with the use of flurodeoxyglucose, amyloid tracers, and dopaminergic transporter imaging (ioflupane). The pathophysiology of some of the major neurodegenerative processes and their clinical presentations are also reviewed; this information is critical to understand how these imaging modalities work, and it aids in the integration of clinical data to help synthesize a final diagnosis. Radiologists and nuclear medicine physicians aiming to include the evaluation of neurodegenerative diseases in their practice should be aware of and familiar with the multiple imaging modalities available and how using these modalities is essential in the multidisciplinary management of patients with neurodegenerative diseases.

Kernaussagen
  • Die radiologischen und nuklearmedizinischen Bildgebungsmodalitäten ergänzen sich und ermöglichen durch Einbezug der klinischen Präsentation eine frühzeitige Diagnose neurodegenerativer Erkrankungen.

  • Bei Verdacht auf Demenz sollten eine räumlich hochauflösende volumetrische T1w Sequenz mit multiplanarer Reformation und eine koronare T2w Sequenz durchgeführt werden, Letztere zur Beurteilung des mesialen Temporallappens senkrecht zur Längsachse des Hippokampus.

  • Die gemeinsame Anwendung von FDG-PET und MRT ist nützlich, um Befunde zu bestätigen und möglicherweise frühe Anomalien zu identifizieren, die sich noch nicht in strukturellen Veränderungen manifestiert haben.

  • Bei der β-Amyloid-Bildgebung werden Bereiche mit erhöhter kortikaler Aufnahme als abnorm angesehen und entsprechen der kortikalen Ablagerung von β-Amyloid-Plaques. Als interne Kontrolle wird zur Feststellung eines normalen Aufnahmemusters das Kleinhirn herangezogen.

  • Das typische Muster der hypometabolischen Aktivität bei der Alzheimer-Krankheit auf 18F-FDG-PET-Bildern betrifft die parietotemporale Region, den Präkuneus und den posterioren Gyrus cinguli. Die sensomotorischen Streifen und die okzipitale Region werden ausgespart. Dieses Muster entspricht in der Regel den in der strukturellen Bildgebung dargestellten atrophischen Veränderungen.

  • Bei Patienten bzw. Patientinnen mit Demenz mit Lewy-Körpern zeigen 18F-FDG-PET-Bilder eine asymmetrisch verminderte Aktivität in den frontotemporalen Lappen, ähnlich wie bei der Alzheimer-Krankheit. Der Metabolismus des posterioren zingulären Kortex bleibt jedoch erhalten (zinguläres Inselzeichen). Bei der Alzheimer-Krankheit ist dagegen fast immer der hintere Gyrus cinguli betroffen.



Publication History

Article published online:
03 May 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Alzheimerʼs Association. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 2019; 15: 321-387
  • 2 Bradford A, Kunik ME, Schulz P. et al. Missed and delayed diagnosis of dementia in primary care: prevalence and contributing factors. Alzheimer Dis Assoc Disord 2009; 23: 306-314
  • 3 Frisoni GB, Fox NC, Jack Jr. CR. et al. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010; 6: 67-77
  • 4 Morris JC, Csernansky J, Price JL. MRI measures of entorhinal cortex versus hippocampus in preclinical AD. Neurology 2002; 59: 1474-1475 author reply 1474-1475
  • 5 Karas G, Scheltens P, Rombouts S. et al. Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study. Neuroradiology 2007; 49: 967-976
  • 6 Shen Q, Loewenstein DA, Potter E. et al. Volumetric and visual rating of magnetic resonance imaging scans in the diagnosis of amnestic mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement 2011; 7: e101-e108
  • 7 Scheltens P, Leys D, Barkhof F. et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55: 967-972
  • 8 Scheltens P, Launer LJ, Barkhof F. et al. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 1995; 242: 557-560
  • 9 Urs R, Potter E, Barker W. et al. Visual rating system for assessing magnetic resonance images: a tool in the diagnosis of mild cognitive impairment and Alzheimer disease. J Comput Assist Tomogr 2009; 33: 73-78
  • 10 Albert M, DeCarli C, DeKosky S. et al. The use of MRI and PET for clinical diagnosis of dementia and investigation of cognitive impairment: a consensus report – report of the Neuroimaging Work Group of the Alzheimer’s Association. 2005 Im Internet (Stand 09.11.2021): https://www.alz.org/national/documents/imaging_consensus_report.pdf
  • 11 Dukart J, Mueller K, Horstmann A. et al. Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS One 2011; 6: e18111
  • 12 Waxman AD, Herholz K, Lewis MD. et al. Society of Nuclear Medicine Procedure guideline for FDG PET brain imaging, Version 1.0. Society of Nuclear Medicine and Molecular Imaging; 2009 Im Internet (Stand 09.11.2021): http://s3.amazonaws.com/rdcms-snmmi/files/production/public/docs/Society%20of%20Nuclear%20Medicine%20Procedure%20Guideline%20for%20FDG%20PET%20Brain%20Imaging.pdf
  • 13 Mestre-Torres J, Lorenzo-Bosquet C, Cuberas-Borrós G. et al. Utility of the 18F-Florbetapir positron emission tomography in systemic amyloidosis. Amyloid 2018; 25: 109-114
  • 14 Catafau AM, Bullich S. Amyloid PET imaging: applications beyond Alzheimer’s disease. Clin Transl Imaging 2015; 3: 39-55
  • 15 Bullich S, Catafau AM, Villemagne VL. et al. Optimal reference region to measure longitudinal amyloid-beta change with 18F-Florbetaben Pet. Alzheimers Dement 2016; 12: P14
  • 16 Hsiao IT, Huang CC, Hsieh CJ. et al. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging 2012; 39: 613-620
  • 17 Minoshima S, Drzezga AE, Djekidel M. Society of Nuclear Medicine and Molecular Imaging. et al. SNMMI Procedure Standard-EANM practice guideline for amyloid PET imaging of the brain. 2016 Im Internet (Stand 09.11.2021): http://s3.amazonaws.com/rdcms-snmmi/files/production/public/ACNM/Documents/SNMMI-EANM%20Standard%20for%20Amyloid%20PET%20Imaging%20of%20the%20Brain%20_1535555859659_26.pdf
  • 18 Djang DSW, Janssen MJR, Bohnen N. Society of Nuclear Medicine and Molecular Imaging. et al. SNM practice guideline for dopamine transporter imaging with 123I-Ioflupane SPECT 1.0*. 2011 Im Internet (Stand 09.11.2021): http://s3.amazonaws.com/rdcms-snmmi/files/production/public/docs/123I_ioflupane_SPECT_Practice_Guideline_JNM_Edit_FINAL.pdf
  • 19 Leuzy A, Chiotis K, Lemoine L. et al. Tau PET imaging in neurodegenerative tauopathies – still a challenge. Mol Psychiatry 2019; 24: 1112-1134
  • 20 Lowe VJ, Curran G, Fang P. et al. An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun 2016; 4: 58
  • 21 Dickstein DL, Pullman MY, Fernandez C. et al. Cerebral [18 F]T807/AV1451 retention pattern in clinically probable CTE resembles pathognomonic distribution of CTE tauopathy. Transl Psychiatry 2016; 6: e900
  • 22 Kakimoto A, Kamekawa Y, Ito S. et al. New computer-aided diagnosis of dementia using positron emission tomography: brain regional sensitivity-mapping method. PLoS One 2011; 6: e25033
  • 23 Mckee AC, Abdolmohammadi B, Stein TD. The neuropathology of chronic traumatic encephalopathy. Handb Clin Neurol 2018; 158: 297-307
  • 24 Irwin DJ. Tauopathies as clinicopathological entities. Parkinsonism Relat Disord 2016; 22 (Suppl. 01) S29-S33
  • 25 Wang S, Mims PN, Roman RJ. et al. Is beta-amyloid accumulation a cause or consequence of Alzheimer’s disease?. J Alzheimers Parkinsonism Dement 2016; 1: 7
  • 26 Shimada H, Shinotoh H, Hirano S. et al. β-Amyloid in Lewy body disease is related to Alzheimer’s disease-like atrophy. Mov Disord 2013; 28: 169-175
  • 27 Gomperts SN, Rentz DM, Moran E. et al. Imaging amyloid deposition in Lewy body diseases. Neurology 2008; 71: 903-910
  • 28 Tan RH, Kril JJ, Yang Y. et al. Assessment of amyloid β in pathologically confirmed frontotemporal dementia syndromes. Alzheimers Dement (Amst.) 2017; 9: 10-20
  • 29 Yan F, Chen Y, Li M. et al. Gastrointestinal nervous system α-synuclein as a potential biomarker of Parkinson disease. Medicine (Baltimore) 2018; 97 (28) e11337
  • 30 Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11: 111-128
  • 31 Leon J, Cheng CK, Neumann PJ. Alzheimer’s disease care: costs and potential savings. Health Aff (Millwood) 1998; 17: 206-216
  • 32 Jia J, Wei C, Chen S. et al. The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement 2018; 14: 483-491
  • 33 Murphy MP, LeVine 3rd H. Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 2010; 19: 311-323
  • 34 Braak H, Alafuzoff I, Arzberger T. et al. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol (Berl.) 2006; 112: 389-404
  • 35 McKhann GM, Knopman DS, Chertkow H. et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 263-269
  • 36 Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl.) 1991; 82: 239-259
  • 37 Laforce Jr. R, Soucy JP, Sellami L. et al. Molecular imaging in dementia: past, present, and future. Alzheimers Dement 2018; 14: 1522-1552
  • 38 Rabinovici GD, Furst AJ, Alkalay A. et al. Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain 2010; 133: 512-528
  • 39 Schwarz AJ, Yu P, Miller BB. et al. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 2016; 139: 1539-1550
  • 40 Yang SK, Chen W, Su CH. et al. Incidence and comorbidity of dementia with Lewy bodies: a population-based cohort study. Behav Neurol 2018; 2018: 7631951
  • 41 Donaghy PC, McKeith IG. The clinical characteristics of dementia with Lewy bodies and a consideration of prodromal diagnosis. Alzheimers Res Ther 2014; 6: 46
  • 42 Mak E, Su L, Williams GB. et al. Neuroimaging characteristics of dementia with Lewy bodies. Alzheimers Res Ther 2014; 6: 18
  • 43 Shams S, Fällmar D, Schwarz S. et al. MRI of the swallow tail sign: a useful marker in the diagnosis of Lewy body dementia?. AJNR Am J Neuroradiol 2017; 38: 1737-1741
  • 44 Graff-Radford J, Murray M, Lowe V. et al. Dementia with Lewy bodies: basis of cingulate island sign. Neurology 2014; 83: 801-809
  • 45 Le Ber I, Guedj E, Gabelle A. et al. Demographic, neurological and behavioural characteristics and brain perfusion SPECT in frontal variant of frontotemporal dementia. Brain 2006; 129: 3051-3065
  • 46 Wada-Isoe K, Ito S, Adachi T. et al. Epidemiological survey of frontotemporal lobar degeneration in tottori prefecture, Japan. Dement Geriatr Cogn Disord Extra 2012; 2: 381-386
  • 47 Bott NT, Radke A, Stephens ML. et al. Frontotemporal dementia: diagnosis, deficits and management. Neurodegener Dis Manag 2014; 4: 439-454
  • 48 Cairns NJ, Bigio EH, Mackenzie IRA. et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol (Berl.) 2007; 114: 5-22
  • 49 Gordon E, Rohrer JD, Fox NC. Advances in neuroimaging in frontotemporal dementia. J Neurochem 2016; 138 (Suppl. 01) 193-210
  • 50 Schroeter ML, Raczka K, Neumann J. et al. Towards a nosology for frontotemporal lobar degenerations – a meta-analysis involving 267 subjects. Neuroimage 2007; 36: 497-510
  • 51 Rohrer JD, Warren JD, Modat M. et al. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 2009; 72: 1562-1569
  • 52 Rabinovici GD, Furst AJ, O’Neil JP. et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 2007; 68: 1205-1212
  • 53 Rizzi L, Rosset I, Roriz-Cruz M. Global epidemiology of dementia: Alzheimer’s and vascular types. Bio Med Res Int 2014; 2014: 908915
  • 54 Strub RL. Vascular dementia. Ochsner J 2003; 5: 40-43
  • 55 van Straaten EC, Scheltens P, Barkhof F. MRI and CT in the diagnosis of vascular dementia. J Neurol Sci 2004; 226: 9-12
  • 56 Román GC, Tatemichi TK, Erkinjuntti T. et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993; 43: 250-260
  • 57 Sachdev P, Kalaria R, O’Brien J. et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord 2014; 28: 206-218