Subscribe to RSS
DOI: 10.1055/a-1471-9080
Fluorene-Based Multicomponent Reactions
The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the ‘2nd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers’ (Project Number: 0911). X.L. acknowledges support from the China Scholarship Council. This project has received funding (to A.D.) from the European Lead Factory (IMI) under Grant Agreement 115489, the Qatar National Research Foundation (NPRP6-065-3-012), the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie [ITN ‘Accelerated Early stage drug dIScovery’, Grant Agreement 675555; Cofunds ALERT (665250) and PROMINENT (754425)].
Dedicated to Professor Ioulia Stephanidou-Stephanatou for her contributions to heterocyclic chemistry
Abstract
Fluorene and fluorenone are privileged structures with extensive utility in both materials science and drug discovery. Here, we describe syntheses of those moieties through isocyanide-based multicomponent reactions (IMCRs) and the incorporation of the products in diverse and complex derivatives that can be further utilized. We performed six different IMCRs, based on the dual functionality of 9-isocyano-9H-fluorene, and we describe 23 unprecedented adducts.
Key words
fluorene - fluorenone - multicomponent reactions - Ugi reaction - isocyanofluorene - spiro compoundsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1471-9080.
- Supporting Information
Publication History
Received: 03 March 2021
Accepted after revision: 31 March 2021
Accepted Manuscript online:
31 March 2021
Article published online:
03 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Perepichka IF, Popov AF, Orekhova TV, Bryce MR, Andrievskii AM, Batsanov AS, Howard JA. K, Sokolov NI. J. Org. Chem. 2000; 65: 3053
- 2 Lim CJ, Lei Y, Wu B, Li L, Liu X, Lu Y, Zhu F, Ong BS, Hu X, Ng S.-C. Tetrahedron Lett. 2016; 57: 1430
- 3 Xia J.-B, Zhu C, Chen C. J. Am. Chem. Soc. 2013; 135: 17494
- 4 Ni S, Yuan Y, Huang J, Mao X, Lv M, Zhu J, Shen X, Pei J, Lai L, Jiang H, Li J. J. Med. Chem. 2009; 52: 5295
- 5 Chen T, Chen Z.-Q, Gong W.-L, Li C, Zhu M.-Q. Mater. Chem. Front. 2017; 1: 1841
- 6 Xu F, Wang H, Du X, Wang W, Wang D.-E, Chen S, Han X, Li N, Yuan M.-S, Wang J. Dyes Pigm. 2016; 129: 121
- 7 Shi Y, Gao S. Tetrahedron 2016; 72: 1717
- 8 Fan C, Wang W, Wang Y, Qin G, Zhao W. Phytochemistry 2001; 57: 1255
- 9 Wang S, Wen B, Wang N, Liu J, He L. Arch. Pharmacal Res. 2009; 32: 521
- 10 Ciccone L, Nencetti S, Rossello A, Stura EA, Orlandini E. J. Enzyme Inhib. Med. Chem. 2016; 31: 40
- 11 Lammerts van Bueren A, Popat SD, Lin C.-H, Davies GJ. ChemBioChem 2010; 11: 1971
- 12 Zechel DL, Boraston AB, Gloster T, Boraston CM, Macdonald JM, Tilbrook DM. G, Stick RV, Davies GJ. J. Am. Chem. Soc. 2003; 125: 14313
- 13 Wuts PG. M, Greene TW. Greene’s Protective Groups in Organic Synthesis, 4th ed. Wiley; Hoboken: 2007
- 14 Zhou A.-H, Pan F, Zhu C, Ye L.-W. Chem. Eur. J. 2015; 21: 10278
- 15 Dong K, Fan X, Pei C, Zheng Y, Chang S, Cai J, Qiu L, Yu Z.-X, Xu X. Nat. Commun. 2020; 11: 2363
- 16 Liu T.-P, Liao Y.-X, Xing C.-H, Hu Q.-S. Org. Lett. 2011; 13: 2452
- 17 Li H, Zhu R.-Y, Shi W.-J, He K.-H, Shi Z.-J. Org. Lett. 2012; 14: 4850
- 18 Ye F, Haddad M, Michelet V, Ratovelomanana-Vidal V. Org. Lett. 2016; 18: 5612
- 19 Zhou Z.-Z, Jin D.-P, Li L.-H, He Y.-T, Zhou P.-X, Yan X.-B, Liu X.-Y, Liang Y.-M. Org. Lett. 2014; 16: 5616
- 20 Kumar R, Raghuvanshi K, Verma RK, Singh MS. Tetrahedron Lett. 2010; 51: 5933
- 21 Rong L, Han H, Jiang H, Tu S. Synth. Commun. 2009; 39: 3493
- 22 Nishida M, Lee D, Shintani R. J. Org. Chem. 2020; 85: 8489
- 23 Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 24 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 25 Méndez Y, Vasco AV, Humpierre AR, Westermann B. ACS Omega 2020; 5: 25505
- 26 Giustiniano M, Basso A, Mercalli V, Massarotti A, Novellino E, Tron GC, Zhu J. Chem. Soc. Rev. 2017; 46: 1295
- 27 Hussein EM, El Guesmi N, Ahmed SA. RSC Adv. 2019; 9: 40118
- 28 Hosseini H, Bayat M. RSC Adv. 2018; 8: 41218
- 29 Meerakrishna RS, Periyaraja S, Shanmugam P. Eur. J. Org. Chem. 2016; 4516
- 30 Zhu Z, Seidel D. Org. Lett. 2016; 18: 631
- 31 Mehta VP, Modha SG, Ruijter E, Van Hecke K, Van Meervelt L, Pannecouque C, Balzarini J, Orru RV. A, Van der Eycken E. J. Org. Chem. 2011; 76: 2828
- 32 Rezayan AH, Hariri S, Azerang P, Ghavami G, Portugal I, Sardari S. Iran. J. Pharm. Res. 2017; 16: 745
- 33 Bon RS, Hong C, Bouma MJ, Schmitz RF, de Kanter FJ. J, Lutz M, Spek AL, Orru RV. A. Org. Lett. 2003; 5: 3759
- 34 Janssen GV, Janssen E, Vande Velde CM. L, Ehlers AW, Slootweg JC, Ruijter E, Lammertsma K, Orru RV. A. Org. Lett. 2014; 16: 5116
- 35 Konstandaras N, Dunn MH, Guerry MS, Barnett CD, Cole ML, Harper JB. Org. Biomol. Chem. 2020; 18: 66
- 36 Janssen GV, Vicente-García E, Vogel W, Slootweg JC, Ruijter E, Lammertsma K, Orru RV. A. Eur. J. Org. Chem. 2014; 3762
- 37 Bon RS, van Vliet B, Sprenkels NE, Schmitz RF, de Kanter FJ. J, Stevens CV, Swart M, Bickelhaupt FM, Groen MB, Orru RV. A. J. Org. Chem. 2005; 70: 3542
- 38 Mooijman M, Bon R, Sprenkels N, van Oosterhout H, de Kanter F, Groen M, Ruijter E, Orru R. Synlett 2012; 2012: 80
- 39 Elders N, Schmitz RF, de Kanter FJ. J, Ruijter E, Groen MB, Orru RV. A. J. Org. Chem. 2007; 72: 6135
- 40 Ugi I, Meyr R. Chem. Ber. 1961; 94: 2229
- 41 Ugi I, Steinbrückner C. Angew. Chem. 1960; 72: 267
- 42 Nutt RF, Joullié MM. J. Am. Chem. Soc. 1982; 104: 5852
- 43 El Kaïm L, Grimaud L, Oble J. Angew. Chem. Int. Ed. 2005; 44: 7961
- 44 El Kaim L, Grimaud L. Tetrahedron 2009; 65: 2153
- 45 El Kaïm L, Gizolme M, Grimaud L, Oble J. J. Org. Chem. 2007; 72: 4169
- 46 Gröbke K, Weber L, Mehlin F. Synlett 1998; 661
- 47 Blackburn C, Guan B, Fleming P, Shiosaki K, Tsai S. Tetrahedron Lett. 1998; 39: 3635
- 48 Bienaymé H, Bouzid K. Angew. Chem. Int. Ed. 1998; 37: 2234
-
49
Passerini M.
Gazz. Chim. Ital. 1921; 51: 126
- 50 Neochoritis CG, Zarganes-Tzitzikas T, Stotani S, Dömling A, Herdtweck E, Khoury K, Dömling A. ACS Comb. Sci. 2015; 17: 493
-
51
Fouad MA,
Abdel-Hamid H,
Ayoup MS.
RSC Adv. 2020; 10: 42644
- 52 Younus HA, Al-Rashida M, Hameed A, Uroos M, Salar U, Rana S, Khan KM. Expert Opin. Ther. Pat. 2020; 31: 267
- 53 Tripolitsiotis NP, Thomaidi M, Neochoritis CG. Eur. J. Org. Chem. 2020; 6525
- 54 Neochoritis CG, Zhao T, Dömling A. Chem. Rev. 2019; 119: 1970
- 55 Boltjes A, Dömling A. Eur. J. Org. Chem. 2019; 7007
- 56 Rostamnia S. RSC Adv. 2015; 5: 97044
- 57 Rostamnia S, Hassankhani A. RSC Adv. 2013; 3: 18626
- 58 Konstantinidou M, Boiarska Z, Butera R, Neochoritis CG, Kurpiewska K, Kalinowska-Tłuscik J, Dömling A. Eur. J. Org. Chem. 2020; 2020: 5601
-
59 CCDC 2065539 and 2065540 contain the supplementary crystallographic data for compounds 2e and 12c. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 60 Gazzotti S, Rainoldi G, Silvani A. Expert Opin. Drug Discovery 2019; 14: 639
- 61 Zarganes-Tzitzikas T, Chandgude AL, Dömling A. Chem. Rec. 2015; 15: 981
- 62 Estévez V, Kloeters L, Kwietniewska N, Vicente-García E, Ruijter E, Orru R. Synlett 2016; 28: 376
- 63 Chalyk BA, Butko MV, Yanshyna OO, Gavrilenko KS, Druzhenko TV, Mykhailiuk PK. Chem. Eur. J. 2017; 23: 16695
- 64 Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 65 van Leusen AM, Hoogenboom BE, Siderius H. Tetrahedron Lett. 1972; 13: 2369
-
66
Ugi-Tetrazole Four-Component (UT-4CR) Synthesis of 7a–e and 2b; General Procedure
The appropriate aniline (1.0 mmol), isocyanide (1.0 mmol), and trimethylsilyl azide (1.0 mmol) were added to a stirred solution of the appropriate aldehyde (1.0 mmol) in MeOH (1.0 mL) at rt, and the mixture was stirred vigorously for 1–2 h. Half the solvent was removed under reduced pressure and, if a solid residue appeared, it was collected by filtration and washed with Et2O. Alternatively, the solvent was removed under reduced pressure, and the residue was purified by column chromatography [silica gel, PE–EtOAc (1:1)].
N-{1-[1-(9H-Fluoren-9-yl)-1H-tetrazol-5-yl]cyclohexyl}-3,4,5-trimethoxyaniline (7c)
Gray solid; yield: 427 mg (86%); mp 216–218 °C. 1H NMR (500 MHz, DMSO-d
6): δ = 7.94 (d, J = 7.6 Hz, 2 H), 7.44 (t, J = 7.6 Hz, 2 H), 7.26 (s, 1 H), 7.12 (s, 2 H), 6.39 (s, 2 H), 5.72 (s, 2 H), 3.59 (s, 3 H), 3.47 (s, 6 H), 2.87 (s, 1 H), 2.61–2.58 (m, 2 H), 2.352–2.348 (m, 2 H), 1.80–1.69 (m, 5 H), 1.47–1.44 (m, 1 H). 13C NMR (126 MHz, DMSO-d
6): δ = 160.3, 153.6, 141.6, 141.5, 140.0, 129.7, 129.5, 128.0, 124.1, 120.8, 91.6, 61.9, 60.5, 55.5, 53.5, 45.5, 24.8, 20.9. MS (ESI): m/z [M + Na]+ calcd for C29H31N5NaO3: 520.23; found: 520.07.
-
67
Oxazoles 12a–c; General Procedure
K2CO3 (1.5 mmol) was added to a stirred solution of the appropriate aldehyde (1.0 mmol) and 9-isocyano-9H-fluorene (1; 1.0 mmol) in MeOH (3.0 mL) at rt, and the mixture was stirred vigorously for 1–5 h. The solvent was then removed under reduced pressure and the residue was collected by filtration and washed with Et2O. Alternatively, the solvent was removed under reduced pressure and the residue was purified by column chromatography [silica gel, PE–EtOAc (4:1)].
5′-(2-Phenylethyl)spiro[fluorene-9,4′-[1,3]oxazole] (12c)
White solid; yield: 276 mg (85%); mp 161–163 °C. 1H NMR (500 MHz, DMSO-d
6): δ = 7.89–7.83 (m, 2 H), 7.69 (s, 1 H), 7.43–7.27 (m, 6 H), 7.10–7.05 (m, 3 H), 6.76 (d, J = 6.9 Hz, 2 H), 4.68–4.65 (m, 1 H), 2.30–2.25 (m, 1 H), 2.13–2.07 (m, 1 H), 1.89–1.88 (m, 1 H), 1.32–1.28 (m, 1 H). 13C NMR (126 MHz, DMSO-d
6): δ = 158.2, 148.1, 143.5, 140.6, 140.0, 139.9, 129.0, 128.9, 128.23, 128.18, 128.0, 127.4, 126.0, 125.9, 124.5, 120.5, 120.2, 85.1, 80.6, 32.9, 31.5. MS (ESI): m/z [M + Na]+ calcd for C23H19NNaO: 348.14; found: 348.10.