Synthesis 2021; 53(17): 3045-3050
DOI: 10.1055/a-1484-6216
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Nickel-Catalyzed Decarbonylative Thioetherification of Acyl Fluorides via C–F Bond Activation

Jingwen You
a   Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
,
Qiang Chen
a   Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
,
b   Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
› Author Affiliations


Abstract

Nickel-catalyzed decarbonylative thioetherification of acyl fluorides has been developed. This transformation allows an array of acyl fluorides to react with thiophenols. A wide range of functional groups are well tolerated and the corresponding sulfides can be obtained in good to excellent yields. This protocol provides the formation of diverse carbon–sulfur bonds via a highly efficient decarbonylative process.

Supporting Information



Publication History

Received: 13 March 2021

Accepted after revision: 16 April 2021

Accepted Manuscript online:
16 April 2021

Article published online:
17 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Nakazawa T, Xu J, Nishikawa T, Oda T, Fujita A, Ukai K, Mangindaan RE. P, Rotinsulu H, Kobayashi H, Namikoshi M. J. Nat. Prod. 2007; 70: 439
    • 1b Dunbar KL, Scharf DH, Litomska A, Hertweck C. Chem. Rev. 2017; 117: 5521
    • 1c Pan F, Shi Z.-J. ACS Catal. 2014; 4: 280
    • 2a Hilbert GE, Johnson TB. J. Am. Chem. Soc. 1929; 51: 1526
    • 2b Petrillo G, Novi M, Garbarino G, Dell’Erba C. Tetrahedron Lett. 1985; 26: 6365
  • 3 Bhowmik A, Yadav M, Fernandes RA. Org. Biomol. Chem. 2020; 18: 2447

    • For selected reviews on carboxylic acids, see:
    • 5a Gooßen LJ, Rodriguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
    • 5b Rodriguez N, Gooßen LJ. Chem. Soc. Rev. 2011; 40: 5030

      For selected reviews on carboxylic acids derivatives, see:
    • 6a Guo L, Rueping M. Chem. Eur. J. 2018; 24: 7794
    • 6b Blanchard N, Bizet V. Angew. Chem. Int. Ed. 2019; 58: 6814
    • 6c Zhao Q, Szostak M. ChemSusChem 2019; 12: 2983
    • 6d Ogiwara Y, Sakai N. Angew. Chem. Int. Ed. 2020; 59: 574
    • 6e Wang Z, Wang X, Nishihara Y. Chem Asian J. 2020; 15: 1234
    • 6f Lu H, Yu T, Xu P, Wei H. Chem. Rev. 2021; 121: 365
    • 7a Correa A, Cornella J, Martin R. Angew. Chem. Int. Ed. 2013; 52: 1878
    • 7b Meng L, Kamada Y, Muto K, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2013; 52: 10048
    • 7c Hong X, Liang Y, Houk KN. J. Am. Chem. Soc. 2014; 136: 2017
    • 7d Lu Q, Yu H, Fu Y. J. Am. Chem. Soc. 2014; 136: 8252
    • 7e Pu X, Hu J, Zhao Y, Shi Z. ACS Catal. 2016; 6: 6692
    • 7f Yue H, Guo L, Liao H.-H, Cai Y, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2017; 56: 4282
    • 7g Lee S-C, Liao H-H, Chatupheeraphat A, Rueping M. Chem. Eur. J. 2018; 24: 3608
    • 8a Shi S, Meng G, Szostak M. Angew. Chem. Int. Ed. 2016; 55: 6959
    • 8b Hu J, Zhao Y, Liu J, Zhang Y, Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718
    • 8c Dey A, Sasmal S, Seth K, Lahiri GK, Maiti D. ACS Catal. 2017; 7: 433
  • 9 Keaveney ST, Schoenebeck F. Angew. Chem. Int. Ed. 2018; 57: 4073
  • 10 Malapit CA, Bour JR, Brigham CE, Sanford MS. Nature 2018; 563: 100
  • 11 Sakurai S, Yoshida T, Tobisu M. Chem. Lett. 2019; 48: 94
    • 12a Okuda Y, Xu J, Ishida T, Wang C.-A, Nishihara Y. ACS Omega 2018; 3: 13129
    • 12b Fu L, Chen Q, Wang Z, Nishihara Y. Org. Lett. 2020; 22: 2350
  • 14 Ogiwara Y, Sakurai Y, Hattori H, Sakai N. Org. Lett. 2018; 20: 4204
    • 15a Wang Z, Wang X, Nishihara Y. Chem. Commun. 2018; 54: 13969
    • 15b Malapit CA, Bour JR, Laursen SR, Sanford MS. J. Am. Chem. Soc. 2019; 141: 17322
  • 16 Wang X, Wang Z, Nishihara Y. Chem. Commun. 2019; 55: 10507
    • 17a Wang X, Wang Z, Liu L, Asanuma Y, Nishihara Y. Molecules 2019; 24: 1671
    • 17b Kayumov M, Zhao J.-N, Mirzaakhmedov S, Wang D.-Y, Zhang A. Adv. Synth. Catal. 2019; 362: 776
  • 18 Chen T, Tan Q, Liu X, Liu L, Huang T, Han L.-B. Synthesis 2021; 53: 95
  • 19 Munoz SB, Dang H, Ispizua-Rodriguez X, Mathew T, Prakash GK. S. Org. Lett. 2019; 21: 1659
  • 20 Xu H, Liang Y, Zhou X, Feng Y.-S. Org. Biomol. Chem. 2012; 10: 2562
  • 21 Li J, Bao W, Zhang Y, Rao Y. Eur. J. Org. Chem. 2019; 7175
  • 22 Liu D, Ma H, Fang P, Mei T. Angew. Chem. Int. Ed. 2019; 58: 5033
  • 23 Liu B, Lim C, Miyake GM. J. Am. Chem. Soc. 2017; 139: 13616
  • 24 Delcaillau T, Bismuto A, Lian Z, Morandi B. Angew. Chem. Int. Ed. 2020; 59: 2110